368
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Doxorubicin-Loaded Liposomes: Enhancing the Oral Bioavailability By Modulation of Physicochemical Characteristics

, , , &
Pages 1187-1202 | Received 04 Jan 2017, Accepted 17 Mar 2016, Published online: 27 Apr 2017

References

  • Roger E Lagarce F Garcion E Benoit JP . Biopharmaceutical parameters to consider in order to alter the fate of nanocarriers after oral delivery. Nanomedicine (Lond)5 (2), 287 – 306 (2010).
  • Bernkop-Schnurch A . Nanocarrier systems for oral drug delivery: do we really need them?Eur. J. Pharm. Sci.49 (2), 272 – 277 (2013).
  • Parmentier J Becker MM Heintz U Fricker G . Stability of liposomes containing bio-enhancers and tetraether lipids in simulated gastro-intestinal fluids. Int. J. Pharm.405 (1–2), 210 – 217 (2011).
  • Mallick S Choi JS . Liposomes: versatile and biocompatible nanovesicles for efficient biomolecules delivery. J. Nanosci. Nanotechnol.14 (1), 755 – 765 (2014).
  • Iwanaga K Ono S Narioka K et al. Application of surface-coated liposomes for oral delivery of peptide: effects of coating the liposome’s surface on the GI transit of insulin. J. Pharm. Sci.88 (2), 248 – 252 (1999).
  • Rowland RN Woodley JF . The stability of liposomes in vitro to pH, bile salts and pancreatic lipase. Biochim. Biophys. Acta620 (3), 400 – 409 (1980).
  • Daeihamed M Dadashzadeh S Haeri A Akhlaghi MF . Potential of liposomes for enhancement of oral drug absorption. Curr. Drug Deliv.14 (2), 289 – 303 (2017).
  • Niu M Lu Y Hovgaard L et al. Hypoglycemic activity and oral bioavailability of insulin-loaded liposomes containing bile salts in rats: the effect of cholate type, particle size and administered dose. Eur. J. Pharm. Biopharm81 (2), 265 – 272 (2012).
  • Chen Y Lu Y Chen J et al. Enhanced bioavailability of the poorly water-soluble drug fenofibrate by using liposomes containing a bile salt. Int. J. Pharm.376 (1–2), 153 – 160 (2009).
  • Janga KY Jukanti R Velpula A et al. Bioavailability enhancement of zaleplon via proliposomes: role of surface charge. Eur. J. Pharm. Biopharm.80 (2), 347 – 357 (2012).
  • Dadashzadeh S Mirahmadi N Babaei MH Vali AM . Peritoneal retention of liposomes: effects of lipid composition, PEG coating and liposome charge. J. Control. Release148 (2), 177 – 186 (2010).
  • Dadashzadeh S Vali AM Rezaie M . The effect of PEG coating on in vitro cytotoxicity and in vivo disposition of topotecan loaded liposomes in rats. Int. J. Pharm.353 (1–2), 251 – 259 (2008).
  • Haeri A Sadeghian S Rabbani S Shirani S Anvari MS Dadashzadeh S . Physicochemical characteristics of liposomes are decisive for their antirestenosis efficacy following local delivery. Nanomedicine (Lond)12 (2), 131 – 145 (2017).
  • Kokkona M Kallinteri P Fatouros D Antimisiaris SG . Stability of SUV liposomes in the presence of cholate salts and pancreatic lipases: effect of lipid composition. Eur. J. Pharm. Sci.9 (3), 245 – 252 (2000).
  • Maitani Y Hazama M Tojo Y Shimoda N Nagai T . Oral administration of recombinant human erythropoietin in liposomes in rats: influence of lipid composition and size of liposomes on bioavailability. J. Pharm. Sci.85 (4), 440 – 445 (1996).
  • Sun W Zou W Huang G Li A Zhang N . Pharmacokinetics and targeting property of TFu-loaded liposomes with different sizes after intravenous and oral administration. J. Drug Target.16 (5), 357 – 365 (2008).
  • Li H Song JH Park JS Han K . Polyethylene glycol-coated liposomes for oral delivery of recombinant human epidermal growth factor. Int. J. Pharm.258 (1–2), 11 – 19 (2003).
  • Arzani G Haeri A Daeihamed M Bakhtiari-Kaboutaraki H Dadashzadeh S . Niosomal carriers enhance oral bioavailability of carvedilol: effects of bile salt-enriched vesicles and carrier surface charge. Int. J. Nanomedicine10, 4797 – 4813 (2015).
  • Plapied L Duhem N Rieux A Préat V . Fate of polymeric nanocarriers for oral drug delivery. Curr. Opin. Colloid Interface Sci.16, 228 – 237 (2011).
  • Velpula A Jukanti R Janga KY et al. Proliposome powders for enhanced intestinal absorption and bioavailability of raloxifene hydrochloride: effect of surface charge. Drug Dev. Ind. Pharm.39 (12), 1895 – 1906 (2013).
  • He C Hu Y Yin L Tang C Yin C . Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials31 (13), 3657 – 3666 (2010).
  • Jain S Patil SR Swarnakar NK Agrawal AK . Oral delivery of doxorubicin using novel polyelectrolyte-stabilized liposomes (layersomes). Mol. Pharm.9 (9), 2626 – 2635 (2012).
  • Feng C Wang Z Jiang C et al. Chitosan/o-carboxymethyl chitosan nanoparticles for efficient and safe oral anticancer drug delivery: in vitro and in vivo evaluation. Int. J. Pharm.457 (1), 158 – 167 (2013).
  • Kim JE Yoon IS Cho HJ Kim DH Choi YH Kim DD . Emulsion-based colloidal nanosystems for oral delivery of doxorubicin: improved intestinal paracellular absorption and alleviated cardiotoxicity. Int. J. Pharm.464 (1–2), 117 – 126 (2014).
  • Desai RB Schwartz MS Matuszewski BK . The identification of three human metabolites of a peptide-doxorubicin conjugate using HPLC-MS-MS in positive and negative ionization modes. J. Chromatogr. Sci.42 (6), 317 – 322 (2004).
  • Bajelan E Haeri A Vali AM Ostad SN Dadashzadeh S . Co-delivery of doxorubicin and PSC 833 (Valspodar) by stealth nanoliposomes for efficient overcoming of multidrug resistance. J. Pharm. Pharm. Sci.15 (4), 568 – 582 (2012).
  • Hu S Niu M Hu F et al. Integrity and stability of oral liposomes containing bile salts studied in simulated and ex vivo gastrointestinal media. Int. J. Pharm.441 (1–2), 693 – 700 (2013).
  • Li L ten Hagen TL Haeri A et al. A novel two-step mild hyperthermia for advanced liposomal chemotherapy. J. Control. Release174, 202 – 208 (2014).
  • Daeihamed M Haeri A Dadashzadeh S . A simple and sensitive HPLC method for fluorescence quantitation of doxorubicin in micro-volume plasma: applications to pharmacokinetic studies in rats. Iran J. Pharm. Res.14 (Suppl), 33 – 42 (2015).
  • Chai GH Xu Y Chen SQ et al. Transport mechanisms of solid lipid nanoparticles across Caco-2 cell monolayers and their related cytotoxicology. ACS Appl. Mater. Interfaces8 (9), 5929 – 5940 (2016).
  • Mathot F des Rieux A Arien A Schneider YJ Brewster M Preat V . Transport mechanisms of mmePEG750P(CL-co-TMC) polymeric micelles across the intestinal barrier. J. Control. Release124 (3), 134 – 143 (2007).
  • Kitchens KM Kolhatkar RB Swaan PW Ghandehari H . Endocytosis inhibitors prevent poly(amidoamine) dendrimer internalization and permeability across Caco-2 cells. Mol. Pharm.5 (2), 364 – 369 (2008).
  • Sato K Nagai J Mitsui N Ryoko Y Takano M . Effects of endocytosis inhibitors on internalization of human IgG by Caco-2 human intestinal epithelial cells. Life Sci.85 (23–26), 800 – 807 (2009).
  • Sadekar S Thiagarajan G Bartlett K et al. Poly(amido amine) dendrimers as absorption enhancers for oral delivery of camptothecin. Int. J. Pharm.456 (1), 175 – 185 (2013).
  • Aramaki Y Tomizawa H Hara T Yachi K Kikuchi H Tsuchiya S . Stability of liposomes in vitro and their uptake by rat Peyer’s patches following oral administration. Pharm. Res.10 (8), 1228 – 1231 (1993).
  • Hermida LG Sabes-Xamani M Barnadas-Rodriguez R . Characteristics and behaviour of liposomes when incubated with natural bile salt extract: implications for their use as oral drug delivery systems. Soft Matter.10 (35), 6677 – 6685 (2014).
  • Parmentier J Thewes B Gropp F Fricker G . Oral peptide delivery by tetraether lipid liposomes. Int. J. Pharm.415 (1–2), 150 – 157 (2011).
  • Han HK Shin HJ Ha DH . Improved oral bioavailability of alendronate via the mucoadhesive liposomal delivery system. Eur. J. Pharm. Sci.46 (5), 500 – 507 (2012).
  • Cone RA . Barrier properties of mucus. Adv. Drug Deliv. Rev.61 (2), 75 – 85 (2009).
  • Miller CR Bondurant B McLean SD McGovern KA O’Brien DF . Liposome-cell interactions in vitro: effect of liposome surface charge on the binding and endocytosis of conventional and sterically stabilized liposomes. Biochemistry37 (37), 12875 – 12883 (1998).
  • Harush-Frenkel O Debotton N Benita S Altschuler Y . Targeting of nanoparticles to the clathrin-mediated endocytic pathway. Biochem. Biophys. Res. Commun.353 (1), 26 – 32 (2007).
  • Speth PA van Hoesel QG Haanen C . Clinical pharmacokinetics of doxorubicin. Clin. Pharmacokinet.15 (1), 15 – 31 (1988).
  • Benival DM Devarajan PV . Lipomer of doxorubicin hydrochloride for enhanced oral bioavailability. Int. J. Pharm.423 (2), 554 – 561 (2012).
  • Kivisto KT Kroemer HK Eichelbaum M . The role of human cytochrome P450 enzymes in the metabolism of anticancer agents: implications for drug interactions. Br. J. Clin. Pharmacol.40 (6), 523 – 530 (1995).
  • Benet LZ Izumi T Zhang Y Silverman JA Wacher VJ . Intestinal MDR transport proteins and P-450 enzymes as barriers to oral drug delivery. J. Control. Release62 (1–2), 25 – 31 (1999).
  • Kawano K Onose E Hattori Y Maitani Y . Higher liposomal membrane fluidity enhances the in vitro antitumor activity of folate-targeted liposomal mitoxantrone. Mol. Pharm.6 (1), 98 – 104 (2009).
  • Yi X Shi X Gao H . Cellular uptake of elastic nanoparticles. Phys. Rev. Lett.107 (9), 098101 (2011).
  • Iwanaga K Ono S Narioka K Morimoto K Kakemi M . Oral delivery of insulin by using surface coating liposomes Improvement of stability of insulin in GI tract. Int. J. Pharm.157 (1), 73 – 80 (1997).
  • Li Y Gao L Tan X Li F Zhao M Peng S . Lipid rafts-mediated endocytosis and physiology-based cell membrane traffic models of doxorubicin liposomes. Biochim. Biophys. Acta1858 (8), 1801 – 1811 (2016).
  • Anderson KE Eliot LA Stevenson BR Rogers JA . Formulation and evaluation of a folic acid receptor-targeted oral vancomycin liposomal dosage form. Pharm. Res.18 (3), 316 – 322 (2001).
  • Li X Chen D Le C et al. Novel mucus-penetrating liposomes as a potential oral drug delivery system: preparation, in vitro characterization, and enhanced cellular uptake. Int. J. Nanomed.63151 – 63162 (2011).
  • Zhang X Qi J Lu Y He W Li X Wu W . Biotinylated liposomes as potential carriers for the oral delivery of insulin. Nanomedicine10 (1), 167 – 176 (2014).
  • Chiang C Weiner N . Gastrointestinal uptake of liposomes. II.In vivo studies. Int. J. Pharm.40 (1–2) 143 – 150 (1987).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.