1,320
Views
0
CrossRef citations to date
0
Altmetric
Review

Selenium Nanoparticles: Potential in Cancer Gene and Drug Delivery

&
Pages 1075-1089 | Received 01 Aug 2016, Accepted 12 Nov 2016, Published online: 25 Apr 2017

References

  • Hanahan D Weinberg RA . The hallmarks of cancer . Cell100 ( 1 ), 57 – 70 ( 2000 ).
  • Kakde D Jain D Shrivastava V Kakde R Patil A . Cancer therapeutics-opportunities, challenges and advances in drug delivery . J. Appl. Pharm. Sci.1 ( 90 ), 1 – 10 ( 2011 ).
  • Mendelsohn J Howley PM Israel MA Gray JW Thompson CB . The Molecular Basis of Cancer . Elsevier Health Sciences , Amsterdam, The Netherlands ( 2014 ).
  • Klaunig JE . Chemical carcinogenesis . In : Principles of Toxicology: Environmental and Industrial Applications . RobertsSMJamesRCWilliamsPL ( Eds ). Wiley , NJ, USA ( 2014 ).
  • Kanwal R Gupta K Gupta S . Cancer epigenetics: an introduction . In : Cancer Epigenetics: Risk Assessment, Diagnosis, Treatment, and Prognosis . MukeshV ( Ed. ). Springer Science+Business Media , NY, USA , 3 – 25 ( 2015 ).
  • Macheret M Halazonetis TD . DNA replication stress as a hallmark of cancer . Annu. Rev. Path.10 , 425 – 448 ( 2015 ).
  • Teoh P Chng W . p53 abnormalities and potential therapeutic targeting in multiple myeloma . Biomed. Res. Int.2014 , 1 – 9 ( 2014 ).
  • Yu MK Park J Jon S . Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy . Theranostics2 ( 1 ), 3 ( 2012 ).
  • Hossein Rashidi L . Investigation of nanoparticle delivery to cancer cells by conjugation with various targeting moieties [MSc dissertation] . The University of Texas at Arlington , TX, USA ( 2016 ).
  • Chen L . Surface functionalization and bioconjugation of nanoparticles for biomedical applications [DPhil thesis] . The University of Western Ontario , ON, Canada ( 1903 ).
  • Mulens V Morales MDP Barber DF . Development of magnetic nanoparticles for cancer gene therapy: a comprehensive review . ISRN Nanomater. 2013(2013) , 646284 ( 2013 ).
  • Maeda H . Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity . Adv. Drug Deliv. Rev.91 , 3 – 6 ( 2015 ).
  • Srinivasarao M Galliford CV Low PS . Principles in the design of ligand-targeted cancer therapeutics and imaging agents . Nat. Rev. Drug Discov.14 ( 3 ), 203 – 219 ( 2015 ).
  • Li J Wang F Sun D Wang R . A review of the ligands and related targeting strategies for active targeting of paclitaxel to tumours . J. Drug Target.24 ( 7 ), 590 – 602 ( 2016 ).
  • Amer MH . Gene therapy for cancer: present status and future perspective . Mol. Cell. Ther.2 ( 1 ), 1 ( 2014 ).
  • Grimm D Kay MA . RNAi and gene therapy: a mutual attraction . Hematology (Am. Soc. Hematol. Educ. Program.)2007 ( 1 ), 473 – 481 ( 2007 ).
  • Takeshita F Ochiya T . Therapeutic potential of RNA interference against cancer . Cancer Sci.97 ( 8 ), 689 – 696 ( 2006 ).
  • Kanasty R Dorkin JR Vegas A Anderson D . Delivery materials for siRNA therapeutics . Nat. Mater.12 ( 11 ), 967 – 977 ( 2013 ).
  • Tabernero J Shapiro GI Lorusso PM et al. First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement . Cancer Discov.3 ( 4 ), 406 – 417 ( 2013 ).
  • Elsabahy M Nazarali A WTvari M . Non-viral nucleic acid delivery: key challenges and future directions . Curr. Drug Deliv.8 ( 3 ), 235 – 244 ( 2011 ).
  • Tapiero H Townsend D Tew K . The antioxidant role of selenium and seleno-compounds . Biomed. Pharmacother.57 ( 3 ), 134 – 144 ( 2003 ).
  • Oldfield J . A brief history of selenium research: from alkali disease to prostate cancer (from poison to prevention) . Am. Soc. Anim. Sci. Online Supplement , 1 – 4 ( 2002 ).
  • Tan LC Nancharaiah YV Van Hullebusch ED Lens PN . Selenium: environmental significance, pollution, and biological treatment technologies . Biotechnol. Adv.34 ( 5 ), 886 – 907 ( 2016 ).
  • Weekley CM Harris HH . Which form is that? The importance of selenium speciation and metabolism in the prevention and treatment of disease . Chem. Soc. Rev.42 ( 23 ), 8870 – 8894 ( 2013 ).
  • Ingole AR Thakare SR Khati N Wankhade AV Burghate D . Green synthesis of selenium nanoparticles under ambient condition . Chalcogenide Lett.7 ( 7 ), 485 – 489 ( 2010 ).
  • Dwivedi C Shah CP Singh K Kumar M Bajaj PN . An organic acid-induced synthesis and characterization of selenium nanoparticles . J. Nanotechnol.2011 ( 2011 ), 651971 ( 2011 ).
  • Nasrolahi Shirazi A Tiwari RK Oh D et al. Cyclic peptide–selenium nanoparticles as drug transporters . Mol. Pharm.11 ( 10 ), 3631 – 3641 ( 2014 ).
  • Estevez H Garcia-Lidon JC Luque-Garcia JL Camara C . Effects of chitosan-stabilized selenium nanoparticles on cell proliferation, apoptosis and cell cycle pattern in HepG2 cells: comparison with other selenospecies . Colloids Surf. B: Biointerfaces122 , 184 – 193 ( 2014 ).
  • Abdulah R Miyazaki K Nakazawa M Koyama H . Chemical forms of selenium for cancer prevention . J. Trace Elem. Med. Biol.19 ( 2 ), 141 – 150 ( 2005 ).
  • Fernandes AP Gandin V . Selenium compounds as therapeutic agents in cancer . Biochim. Biophys. Acta1850 ( 8 ), 1642 – 1660 ( 2015 ).
  • El-Bayoumy K Sinha R . Molecular chemoprevention by selenium: a genomic approach . Mutat. Res.591 ( 1 ), 224 – 236 ( 2005 ).
  • Sanmartín C Plano D Sharma AK Palop JA . Selenium compounds, apoptosis and other types of cell death: an overview for cancer therapy . Int. J. Mol. Sci.13 ( 8 ), 9649 – 9672 ( 2012 ).
  • Jing F Fu X Li S et al. Synthesis and in vitro antiproliferative evaluation of novel hybrids from 1,3,4-thiadiazole and benzisoselenazolone . Chem. Pharm. Bull. (Tokyo)63 ( 6 ), 431 – 437 ( 2015 ).
  • El-Bayoumy K . The protective role of selenium on genetic damage and on cancer . Mutat. Res.475 ( 1 ), 123 – 139 ( 2001 ).
  • Combs GF Gray WP . Chemopreventive agents: selenium . Pharmacol. Ther.79 ( 3 ), 179 – 192 ( 1998 ).
  • Ganther HE . Selenium metabolism, selenoproteins and mechanisms of cancer prevention: complexities with thioredoxin reductase . Carcinogenesis20 ( 9 ), 1657 – 1666 ( 1999 ).
  • Zeng H Combs GF . Selenium as an anticancer nutrient: roles in cell proliferation and tumor cell invasion . J. Nutr. Biochem.19 ( 1 ), 1 – 7 ( 2008 ).
  • Dong Y Ganther HE Stewart C Ip C . Identification of molecular targets associated with selenium-induced growth inhibition in human breast cells using cDNA microarrays . Cancer Res.62 ( 3 ), 708 – 714 ( 2002 ).
  • Panahi-Kalamuei M Salavati-Niasari M Hosseinpour-Mashkani SM . Facile microwave synthesis, characterization, and solar cell application of selenium nanoparticles . J. Alloys Compd.617 , 627 – 632 ( 2014 ).
  • Lin ZH Wang CC . Evidence on the size-dependent absorption spectral evolution of selenium nanoparticles . Mater. Chem. Phys.92 ( 2 ), 591 – 594 ( 2005 ).
  • Jia X Liu Q Zou S Xu X Zhang L . Construction of selenium nanoparticles/β-glucan composites for enhancement of the antitumor activity . Carbohydr. Polym.117 , 434 – 442 ( 2015 ).
  • Van Overschelde O Guisbiers G Snyders R . Green synthesis of selenium nanoparticles by excimer pulsed laser ablation in water . APL Mater.1 ( 4 ), 042114 ( 2013 ).
  • Forootanfar H Adeli-Sardou M Nikkhoo M et al. Antioxidant and cytotoxic effect of biologically synthesized selenium nanoparticles in comparison to selenium dioxide . J. Trace Elem. Med. Biol.28 ( 1 ), 75 – 79 ( 2014 ).
  • Prasad KS Selvaraj K . Biogenic synthesis of selenium nanoparticles and their effect on As(III)-induced toxicity on human lymphocytes . Biol. Trace Elem. Res.157 ( 3 ), 275 – 283 ( 2014 ).
  • Hemalatha T Krithiga G Kumar BS Sastry TP . Preparation and characterization of hydroxyapatite-coated selenium nanoparticles and their interaction with osteosarcoma (SaOS-2) cells . Acta Metall. Sin. (Engl. Lett.)27 ( 6 ), 1152 – 1158 ( 2014 ).
  • Ramamurthy C Sampath K Arunkumar P et al. Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells . Bioprocess Biosyst. Eng.36 ( 8 ), 1131 – 1139 ( 2013 ).
  • Mittal AK Kumar S Banerjee UC . Quercetin and gallic acid mediated synthesis of bimetallic (silver and selenium) nanoparticles and their antitumor and antimicrobial potential . J. Colloid Interface Sci.431 , 194 – 199 ( 2014 ).
  • Prasad KS Patel H Patel T Patel K Selvaraj K . Biosynthesis of Se nanoparticles and its effect on UV-induced DNA damage . Colloids Surf. B: Biointerfaces103 , 261 – 266 ( 2013 ).
  • Fratila RM Mitchell SG Del Pino P Grazu V De La Fuente JSM . Strategies for the biofunctionalization of gold and iron oxide nanoparticles . Langmuir30 ( 50 ), 15057 – 15071 ( 2014 ).
  • Kango S Kalia S Celli A Njuguna J Habibi Y Kumar R . Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites – a review . Prog. Polym. Sci.38 ( 8 ), 1232 – 1261 ( 2013 ).
  • Yu B Zhang Y Zheng W Fan C Chen T . Positive surface charge enhances selective cellular uptake and anticancer efficacy of selenium nanoparticles . Inorg. Chem.51 ( 16 ), 8956 – 8963 ( 2012 ).
  • Zhang S Luo Y Zeng H et al. Encapsulation of selenium in chitosan nanoparticles improves selenium availability and protects cells from selenium-induced DNA damage response . J. Nutr. Biochem.22 ( 12 ), 1137 – 1142 ( 2011 ).
  • Chen Q Yu Q Liu Y et al. Multifunctional selenium nanoparticles: chiral selectivity of delivering MDR–siRNA for reversal of multidrug resistance and real-time biofluorescence imaging . Nanomedicine11 ( 7 ), 1773 – 1784 ( 2015 ).
  • Zheng W Cao C Liu Y et al. Multifunctional polyamidoamine-modified selenium nanoparticles dual-delivering siRNA and cisplatin to A549/DDP cells for reversal multidrug resistance . Acta Biomater.11 , 368 – 380 ( 2015 ).
  • Yu Q Liu Y Cao C et al. The use of pH-sensitive functional selenium nanoparticles shows enhanced in vivo VEGF–siRNA silencing and fluorescence imaging . Nanoscale6 ( 15 ), 9279 – 9292 ( 2014 ).
  • Jiang W Fu Y Yang F et al. Gracilaria lemaneiformis polysaccharide as integrin-targeting surface decorator of selenium nanoparticles to achieve enhanced anticancer efficacy . ACS Appl. Mater. Interfaces6 ( 16 ), 13738 – 13748 ( 2014 ).
  • Wu H Zhu H Li X et al. Induction of apoptosis and cell cycle arrest in A549 human lung adenocarcinoma cells by surface-capping selenium nanoparticles: an effect enhanced by polysaccharide–protein complexes from Polyporus rhinocerus . J. Agric. Food Chem.61 ( 41 ), 9859 – 9866 ( 2013 ).
  • Lin G Zhang H Huang L . Smart polymeric nanoparticles for cancer gene delivery . Mol. Pharm.12 ( 2 ), 314 – 321 ( 2015 ).
  • Veronese FM Pasut G . PEGylation, successful approach to drug delivery . Drug Discov. Today10 ( 21 ), 1451 – 1458 ( 2005 ).
  • Mary TA Shanthi K Vimala K Soundarapandian K . PEG functionalized selenium nanoparticles as a carrier of crocin to achieve anticancer synergism . RSC Adv.6 ( 27 ), 22936 – 22949 ( 2016 ).
  • Zheng S Li X Zhang Y et al. PEG-nanolized ultrasmall selenium nanoparticles overcome drug resistance in hepatocellular carcinoma HepG2 cells through induction of mitochondria dysfunction . Int. J. Nanomed.7 , 3939 – 3949 ( 2012 ).
  • Yu B Liu T Du Y Luo Z Zheng W Chen T . X-ray-responsive selenium nanoparticles for enhanced cancer chemo-radiotherapy . Colloids Surf. B: Biointerfaces139 , 180 – 189 ( 2016 ).
  • Sun D Liu Y Yu Q et al. The effects of luminescent ruthenium (II) polypyridyl functionalized selenium nanoparticles on bFGF-induced angiogenesis and AKT/ERK signaling . Biomaterials34 ( 1 ), 171 – 180 ( 2013 ).
  • Sun D Liu Y Yu Q et al. Inhibition of tumor growth and vasculature and fluorescence imaging using functionalized ruthenium-thiol protected selenium nanoparticles . Biomaterials35 ( 5 ), 1572 – 1583 ( 2014 ).
  • Liu T Zeng L Jiang W Fu Y Zheng W Chen T . Rational design of cancer-targeted selenium nanoparticles to antagonize multidrug resistance in cancer cells . Nanomedicine11 ( 4 ), 947 – 958 ( 2015 ).
  • Pi J Jin H Liu R et al. Pathway of cytotoxicity induced by folic acid modified selenium nanoparticles in MCF-7 cells . Appl. Microbiol. Biotechnol.97 ( 3 ), 1051 – 1062 ( 2013 ).
  • Li Y Li X Zheng W Fan C Zhang Y Chen T . Functionalized selenium nanoparticles with nephroprotective activity, the important roles of ROS-mediated signaling pathways . J. Mater. Chem.1 ( 46 ), 6365 – 6372 ( 2013 ).
  • Chen T Wong YS Zheng W Bai Y Huang L . Selenium nanoparticles fabricated in Undaria pinnatifida polysaccharide solutions induce mitochondria-mediated apoptosis in A375 human melanoma cells . Colloids Surf. B: Biointerfaces67 ( 1 ), 26 – 31 ( 2008 ).
  • Nicolas J Mura S Brambilla D Mackiewicz N Couvreur P . Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery . Chem. Soc. Rev.42 ( 3 ), 1147 – 1235 ( 2013 ).
  • Huang Y He L Liu W et al. Selective cellular uptake and induction of apoptosis of cancer-targeted selenium nanoparticles . Biomaterials34 ( 29 ), 7106 – 7116 ( 2013 ).
  • Liu W Li X Wong YS et al. Selenium nanoparticles as a carrier of 5-fluorouracil to achieve anticancer synergism . ACS Nano6 ( 8 ), 6578 – 6591 ( 2012 ).
  • Gao F Yuan Q Gao L et al. Cytotoxicity and therapeutic effect of irinotecan combined with selenium nanoparticles . Biomaterials35 ( 31 ), 8854 – 8866 ( 2014 ).
  • Chen T Liu Y Zheng WJ Liu J Wong YS . Ruthenium polypyridyl complexes that induce mitochondria-mediated apoptosis in cancer cells . Inorg. Chem.49 ( 14 ), 6366 – 6368 ( 2010 ).
  • Xu Q He C Xiao C Chen X . Reactive oxygen species (ROS) responsive polymers for biomedical applications . Macromol. Biosci.16 ( 5 ), 635 – 646 ( 2016 ).
  • Zhou W Wang L Li F et al. Selenium-containing polymer@ metal-organic frameworks nanocomposites as an efficient multiresponsive drug delivery system . Adv. Funct. Mater.27 , 1605465 ( 2016 ).
  • Xu H Cao W Zhang X . Selenium-containing polymers: promising biomaterials for controlled release and enzyme mimics . Acc. Chem. Res.46 ( 7 ), 1647 – 1658 ( 2013 ).
  • Cao W Zhang X Miao X Yang Z Xu H . γ-ray-responsive supramolecular hydrogel based on a diselenide-containing polymer and a peptide . Angew. Chem. Int. Ed. Engl.125 ( 24 ), 6353 – 6357 ( 2013 ).
  • Han P Li S Cao W et al. Red light responsive diselenide-containing block copolymer micelles . J. Mater. Chem.1 ( 6 ), 740 – 743 ( 2013 ).
  • Ren H Wu Y Li Y et al. Visible-light-induced disruption of diselenide-containing layer-by-layer films: toward combination of chemotherapy and photodynamic therapy . Small9 ( 23 ), 3981 – 3986 ( 2013 ).
  • Ma N Xu H An L Li J Sun Z Zhang X . Radiation-sensitive diselenide block co-polymer micellar aggregates: toward the combination of radiotherapy and chemotherapy . Langmuir27 ( 10 ), 5874 – 5878 ( 2011 ).
  • Cao W Gu Y Meineck M Xu H . The combination of chemotherapy and radiotherapy towards more efficient drug delivery . Chem. – Asian J.9 ( 1 ), 48 – 57 ( 2014 ).
  • Cao W Li Y Yi Y et al. Coordination-responsive selenium-containing polymer micelles for controlled drug release . Chem. Sci.3 ( 12 ), 3403 – 3408 ( 2012 ).
  • Wang L Cao W Yi Y Xu H . Dual redox responsive coassemblies of diselenide-containing block copolymers and polymer lipids . Langmuir30 ( 19 ), 5628 – 5636 ( 2014 ).
  • Ma N Li Y Ren H Xu H Li Z Zhang X . Selenium-containing block copolymers and their oxidation-responsive aggregates . Polym. Chem.1 ( 10 ), 1609 – 1614 ( 2010 ).
  • Ren H Wu Y Ma N Xu H Zhang X . Side-chain selenium-containing amphiphilic block copolymers: redox-controlled self-assembly and disassembly . Soft Matter8 ( 5 ), 1460 – 1466 ( 2012 ).
  • Yu B Li X Zheng W Feng Y Wong YS Chen T . pH-responsive cancer-targeted selenium nanoparticles: a transformable drug carrier with enhanced theranostic effects . J. Mater. Chem.2 ( 33 ), 5409 – 5418 ( 2014 ).
  • Neufeld G Cohen T Gengrinovitch S Poltorak Z . Vascular endothelial growth factor (VEGF) and its receptors . FASEB J.13 ( 1 ), 9 – 22 ( 1999 ).
  • Kapse-Mistry S Govender T Srivastava R Yergeri M . Nanodrug delivery in reversing multidrug resistance in cancer cells . Front. Pharmacol.5 , 159 ( 2014 ).
  • Zheng W Yin T Chen Q et al. Co-delivery of Se nanoparticles and pooled SiRNAs for overcoming drug resistance mediated by P-glycoprotein and class III β-tubulin in drug-resistant breast cancers . Acta Biomater.31 , 197 – 210 ( 2016 ).
  • Deng J Wu S Yao M Gao C . Surface-anchored poly (acryloyl-L (D)-valine) with enhanced chirality-selective effect on cellular uptake of gold nanoparticles . Sci. Rep.6 , 31595 ( 2016 ).
  • Liu Y Dong CM . Effect of chirality on conformation and cellular uptake of poly (S-(o-nitrobenzyl)-l, d-cysteine) polypeptides . Chin. Chem. Lett. ( 2016 ) ( In Press ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.