1,640
Views
0
CrossRef citations to date
0
Altmetric
Commentary

Nanophotosensitive Drugs for Light-Based Cancer Therapy: What Does the Future Hold?

, , , &
Pages 1101-1105 | Received 06 Mar 2017, Accepted 15 Mar 2017, Published online: 27 Apr 2017

References

  • Lucky SS Soo KC Zhang Y . Nanoparticles in photodynamic therapy. Chem. Rev.115 (4), 1990 – 2042 (2015).
  • Paszko E Ehrhardt C Senge MO Kelleher DP Reynolds JV . Nanodrug applications in photodynamic therapy. Photodiagn. Photodyn.8 (1), 14 – 29 (2011).
  • Lyass O Uziely B Ben-Yosef R et al. Correlation of toxicity with pharmacokinetics of pegylated liposomal doxorubicin (Doxil) in metastatic breast carcinoma. Cancer89 (5), 1037 – 1047 (2000).
  • Stylianopoulos T . EPR-effect: utilizing size-dependent nanoparticle delivery to solid tumors. Ther. Deliv.4 (4), 421 – 423 (2013).
  • Huang YY Sharma SK Dai TH et al. Can nanotechnology potentiate photodynamic therapy? Nanotechnol. Rev. 1 (2), 111 – 146 (2012).
  • Cruess AF Zlateva G Pleil AM Wirostko B . Photodynamic therapy with verteporfin in age-related macular degeneration: a systematic review of efficacy, safety, treatment modifications and pharmacoeconomic properties. Acta Ophthalmol.87 (2), 118 – 132 (2009).
  • Ochsner M . Light scattering of human skin: a comparison between zinc (II)-phthalocyanine and photofrin II. J. Photochem. Photobiol. B32 (1–2), 3 – 9 (1996).
  • Lasic DD Martin FJ Gabizon A Huang SK Papahadjopoulos D . Sterically stabilized liposomes: a hypothesis on the molecular origin of the extended circulation times. Biochim. Biophys. Acta1070 (1), 187 – 192 (1991).
  • Konan YN Berton M Gurny R Allemann E . Enhanced photodynamic activity of meso-tetra(4-hydroxyphenyl)porphyrin by incorporation into sub-200 nm nanoparticles. Eur. J. Pharm. Sci.18 (3–4), 241 – 249 (2003).
  • Peterson CM Lu JM Sun YR et al. Combination chemotherapy and photodynamic therapy with N-(2-hydroxypropyl)methacrylamide copolymer-bound anticancer drugs inhibit human ovarian carcinoma heterotransplanted in nude mice. Cancer Res.56 (17), 3980 – 3985 (1996).
  • Reddy GR Bhojani MS Mcconville P et al. Vascular targeted nanoparticles for imaging and treatment of brain tumors. Clin. Cancer Res.12 (22), 6677 – 6686 (2006).
  • Chen K Preuss A Hackbarth S Wacker M Langer K Roder B . Novel photosensitizer-protein nanoparticles for photodynamic therapy: photophysical characterization and in vitro investigations. J. Photochem. Photobiol. B96 (1), 66 – 74 (2009).
  • Wang M Maragani S Huang L et al. Synthesis of decacationic [60] fullerene decaiodides giving photoinduced production of superoxide radicals and effective PDT-mediation on antimicrobial photoinactivation. Eur. J. Med. Chem.63170 – 184 (2013).
  • Frank SN Bard AJ . Heterogeneous photocatalytic oxidation of cyanide ion in aqueous-solutions at Tio2 powder. J. Am. Chem. Soc.99 (1), 303 – 304 (1977).
  • Nel A Xia T Madler L Li N . Toxic potential of materials at the nanolevel. Science311 (5761), 622 – 627 (2006).
  • Vankayala R Kuo CL Nuthalapati K Chiang CS Hwang KC . Nucleus-targeting gold nanoclusters for simultaneous in vivo fluorescence imaging, gene delivery, and NIR-light activated photodynamic therapy. Adv. Funct. Mater.25 (37), 5934 – 5945 (2015).
  • Idris NM Gnanasammandhan MK Zhang J Ho PC Mahendran R Zhang Y . In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat. Med.18 (10), 1580 – 1585 (2012).
  • Ranjan S Jayakumar MK Zhang Y . Luminescent lanthanide nanomaterials: an emerging tool for theranostic applications. Nanomedicine (Lond)10 (9), 1477 – 1491 (2015).
  • Hsu CY Chen CW Yu HP Lin YF Lai PS . Bioluminescence resonance energy transfer using luciferase-immobilized quantum dots for self-illuminated photodynamic therapy. Biomaterials34 (4), 1204 – 1212 (2013).
  • Zou X Yao M Ma L et al. X-ray-induced nanoparticle-based photodynamic therapy of cancer. Nanomedicine (Lond)9 (15), 2339 – 2351 (2014).
  • Kotagiri N Sudlow GP Akers WJ Achilefu S . Breaking the depth dependency of phototherapy with Cerenkov radiation and low-radiance-responsive nanophotosensitizers. Nat. Nanotechnol.10 (4), 370 – 379 (2015).