182
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Cholic Acid-Based Novel Micellar Nanoplatform for Delivering FDA-Approved Taxanes

, , , , , , , , , , & show all
Pages 1153-1164 | Received 12 Oct 2016, Accepted 06 Mar 2017, Published online: 27 Apr 2017

References

  • Rowinsky EK . The development and clinical utility of the taxane class of antimicrotubule chemotherapy agents. Annu. Rev. Med.48, 353 – 374 (1997).
  • Yared JA Tkaczuk KH . Update on taxane development: new analogs and new formulations. Drug Des. Devel. Ther.6, 371 – 384 (2012).
  • Wang Y-F Shi Q-W Dong M Kiyota H Gu Y-C Cong B . Natural taxanes: developments since 1828. Chem. Rev.111 (12), 7652 – 7709 (2011).
  • De Weger VA Beijnen JH Schellens JH . Cellular and clinical pharmacology of the taxanes docetaxel and paclitaxel--a review. Anti-Cancer Drugs25 (5), 488 – 494 (2014).
  • Bedard PL Di Leo A Piccart-Gebhart MJ . Taxanes: optimizing adjuvant chemotherapy for early-stage breast cancer. Nat. Rev. Clin. Oncol.7 (1), 22 – 36 (2010).
  • Chu Q Vincent M Logan D Mackay JA Evans WK . Taxanes as first-line therapy for advanced non-small cell lung cancer: a systematic review and practice guideline. Lung Cancer50 (3), 355 – 374 (2005).
  • Guastalla Iii JP Dieras V . The taxanes: toxicity and quality of life considerations in advanced ovarian cancer. Br. J. Cancer89 (Suppl 3), S16 – S22 (2003).
  • Bishr M Saad F . Overview of the latest treatments for castration-resistant prostate cancer. Nat. Rev. Urol.10 (9), 522 – 528 (2013).
  • Reddy LH Bazile D . Drug delivery design for intravenous route with integrated physicochemistry, pharmacokinetics and pharmacodynamics: illustration with the case of taxane therapeutics. Adv. Drug Del. Rev.71, 34 – 57 (2014).
  • Joerger M . Treatment regimens of classical and newer taxanes. Cancer Chemother. Pharmacol.77 (2), 221 – 233 (2016).
  • Gradishar WJ . Albumin-bound paclitaxel: a next-generation taxane. Expert Opin. Pharmacother.7 (8), 1041 – 1053 (2006).
  • Jäger E Jäger A Chytil P et al. Combination chemotherapy using core-shell nanoparticles through the self-assembly of HPMA-based copolymers and degradable polyester. J. Control. Release165 (2), 153 – 161 (2013).
  • Bushman J Vaughan A Sheihet L Zhang Z Costache M Kohn J . Functionalized nanospheres for targeted delivery of paclitaxel. J. Control. Release171 (3), 315 – 321 (2013).
  • Wang AZ Langer R Farokhzad OC . Nanoparticle delivery of cancer drugs. Annu. Rev. Med.63, 185 – 198 (2012).
  • Kato K Chin K Yoshikawa T et al. Phase II study of NK105, a paclitaxel-incorporating micellar nanoparticle, for previously treated advanced or recurrent gastric cancer. Invest. New Drugs30 (4), 1621 – 1627 (2012).
  • Lee KS Chung HC Im SA et al. Multicenter Phase II trial of Genexol-PM, a cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res. Treat.108 (2), 241 – 250 (2008).
  • Bensaid F Thillaye Du Boullay O Amgoune A et al. Y-shaped mPEG-PLA cabazitaxel conjugates: well-controlled synthesis by organocatalytic approach and self-assembly into interface drug-loaded core-corona nanoparticles. Biomacromolecules14 (4), 1189 – 1198 (2013).
  • Zhou G Jin X Zhu P et al. Human serum albumin nanoparticles as a novel delivery system for cabazitaxel. Anticancer Res.36 (4), 1649 – 1656 (2016).
  • Luxenhofer R Schulz A Roques C et al. Doubly amphiphilic poly(2-oxazoline)s as high-capacity delivery systems for hydrophobic drugs. Biomaterials31 (18), 4972 – 4979 (2010).
  • Han Y He Z Schulz A et al. Synergistic combinations of multiple chemotherapeutic agents in high capacity poly(2-oxazoline) micelles. Mol. Pharm.9 (8), 2302 – 2313 (2012).
  • He Z Schulz A Wan X et al. Poly(2-oxazoline) based micelles with high capacity for 3rd generation taxoids: preparation, in vitro and in vivo evaluation. J. Control. Release208, 67 – 75 (2015).
  • Xiao K Luo J Fowler WL et al. A self-assembling nanoparticle for paclitaxel delivery in ovarian cancer. Biomaterials30 (30), 6006 – 6016 (2009).
  • Davis ME Chen Z Shin DM . Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov.7 (9), 771 – 782 (2008).
  • Xu S Olenyuk BZ Okamoto CT Hamm-Alvarez SF . Targeting receptor-mediated endocytotic pathways with nanoparticles: rationale and advances. Adv. Drug Deliv. Rev.65 (1), 121 – 138 (2013).
  • Markman JL Rekechenetskiy A Holler E Ljubimova JY . Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv. Drug Deliv. Rev.65 (13–14), 1866 – 1879 (2013).
  • Kamaly N Xiao Z Valencia PM Radovic-Moreno AF Farokhzad OC . Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem. Soc. Rev.41 (7), 2971 – 3010 (2012).
  • Iyer AK Khaled G Fang J Maeda H . Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Disc. Today Targets11 (17–18), 812 – 818 (2006).
  • Luo J Xiao K Li Y et al. Well-defined, size-tunable, multifunctional micelles for efficient paclitaxel delivery for cancer treatment. Bioconjugate Chem.21 (7), 1216 – 1224 (2010).
  • Xiao K Luo J Li Y Lee JS Fung G Lam KS . PEG-oligocholic acid telodendrimer micelles for the targeted delivery of doxorubicin to B-cell lymphoma. J. Control. Release155 (2), 272 – 281 (2011).
  • Kato J Li Y Xiao K et al. Disulfide cross-linked micelles for the targeted delivery of vincristine to B-cell lymphoma. Mol. Pharm.9 (6), 1727 – 1735 (2012).
  • Lin TY Zhang H Luo J et al. Multifunctional targeting micelle nanocarriers with both imaging and therapeutic potential for bladder cancer. Int. J. Nanomed.7, 2793 – 2804 (2012).
  • Zhang H Li Y Lin TY et al. Nanomicelle formulation modifies the pharmacokinetic profiles and cardiac toxicity of daunorubicin. Nanomedicine9 (12), 1807 – 1820 (2014).
  • Xiao K Li Y-P Wang C et al. Disulfide cross-linked micelles of novel HDAC inhibitor thailandepsin A for the treatment of breast cancer. Biomaterials67, 183 – 193 (2015).
  • Lin TY Li YP Zhang HY et al. Tumor-targeting multifunctional micelles for imaging and chemotherapy of advanced bladder cancer. Nanomedicine8 (8), 1239 – 1251 (2013).
  • Shi C Guo D Xiao K Wang X Wang L Luo J . A drug-specific nanocarrier design for efficient anticancer therapy. Nat. Commun.6, 7449 (2015).
  • Li Y Lin T-Y Luo Y et al. A smart and versatile theranostic nanomedicine platform based on nanoporphyrin. Nat. Commun.5, 4712 (2014).
  • Li Y Xiao K Luo J Lee J Pan S Lam KS . A novel size-tunable nanocarrier system for targeted anticancer drug delivery. J. Control. Release144 (3), 314 – 323 (2010).
  • Li Y Xiao K Luo J et al. Well-defined, reversible disulfide cross-linked micelles for on-demand paclitaxel delivery. Biomaterials32 (27), 6633 – 6645 (2011).
  • Xiao K Li Y Lee JS et al. “OA02” peptide facilitates the precise targeting of paclitaxel-loaded micellar nanoparticles to ovarian cancer in vivo. Cancer Res.72 (8), 2100 – 2110 (2012).
  • Kenyon NJ Bratt JM Lee J et al. Self-assembling nanoparticles containing dexamethasone as a novel therapy in allergic airways inflammation. PLoS ONE8 (10), e77730 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.