132
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The Activity of Silver Nanoparticles Against Microalgae of the Prototheca Genus

, , , , , , & show all
Pages 1025-1036 | Received 10 Dec 2017, Accepted 01 Mar 2018, Published online: 23 May 2018

References

  • Christenhusz MJM Byng JW . The number of known plants species in the world and its annual increase . Phytotaxa261 , 201 – 217 ( 2016 ).
  • Jagielski T Lagneau PE . Protothecosis. A pseudofungal infection . J. Mycol. Med.17 , 261 – 270 ( 2007 ).
  • Roesler U Möller A Hensel A Baumann D Truyen U . Diversity within the current algal species Prototheca zopfii: a proposal for two Prototheca zopfii genotypes and description of a novel species, Prototheca blaschkeae sp. nov . Int. J. Sys. Evol. Microbiol.56 , 1 – 7 ( 2006 ).
  • Satoh K Ooe K Nagayama H Makimura K . Prototheca cutis sp. nov., a newly discovered pathogen of protothecosis isolated from inflamed human skin . Int. J. Sys. Evol. Microbiol.60 , 1236 – 1240 ( 2010 ).
  • Masuda M Hirose N Ishikawa T . Prototheca miyajii sp. nov., isolated from a patient with systemic protothecosis . Int. J. Sys. Evol. Microbiol.66 , 1510 – 1520 ( 2016 ).
  • Nagatsuka Y Kiyuna T Kigawa R Sano C Sugiyama J . Prototheca tumulicola sp. nov., a novel achlorophyllous algal species isolated from the stone chamber interior of the Takamatsuzuka Tumulus . Mycoscience58 , 53 – 59 ( 2017 ).
  • Todd JR King JW Oberle A et al. Protothecosis: report of a case with 20 year follow-up, and review of previously published cases . Med. Mycol.50 , 673 – 689 ( 2012 ).
  • Bueno VF de Mesquita AJ Neves RB et al. Epidemiological and clinical aspects of the first outbreak of bovine mastitis caused by Prototheca zopfii in Goiás State, Brazil . Mycopathologia161 , 141 – 145 ( 2006 ).
  • Gao J Zhang HQ He JZ et al. Characterization of Prototheca zopfii associated with outbreak of bovine clinical mastitis in herd of Beijing, China . Mycopathologia173 , 275 – 281 ( 2012 ).
  • Ricchi M De Cicco C Buzzini P et al. First outbreak of bovine mastitis caused by Prototheca blaschkeae . Vet. Microbiol.162 , 997 – 999 ( 2013 ).
  • Jagielski T Lassa H Ahrholdt J Malinowski E Roesler U . Genotyping of bovine Prototheca mastitis isolates from Poland . Vet. Microbiol.149 , 283 – 287 ( 2011 ).
  • Buzzini P Turchetti B Branda E et al. Large-scale screening of the in vitro susceptibility of Prototheca zopfii towards polyene antibiotics . Med. Mycol.46 , 511 – 514 ( 2008 ).
  • Jagielski T Buzzini P Lassa H et al. Multicentre Etest evaluation of in vitro activity of conventional antifungal drugs against European bovine mastitis Prototheca spp. isolates . J. Antimicrob. Chemother.67 , 1945 – 1947 ( 2012 ).
  • Lassa H Malinowski E . Resistance of yeasts and algae isolated from cow mastitic milk to antimicrobial agents . Bull. Vet. Inst. Pulawy51 , 575 – 578 ( 2007 ).
  • Tortorano AM Prigitano A Dho G Piccinini R Daprà V Viviani MA . In vitro activity of conventional antifungal drugs and natural essences against the yeast-like alga Prototheca . J. Antimicrob. Chemother.61 , 1312 – 1314 ( 2008 ).
  • Turchetti B Pinelli P Buzzini P et al. In vitro antimycotic activity of some plant extracts towards yeast and yeast-like strains . Phytother. Res.19 , 44 – 49 ( 2005 ).
  • Buzzini P Menichetti S Pagliuca C Viglianisi C Branda E Turchetti B . Antimycotic activity of 4-thioisosteres of flavonoids towards yeast and yeast-like microorganisms . Bioorg. Med. Chem. Lett.18 , 3731 – 3733 ( 2008 ).
  • Tomasinsig L Skerlavaj B Scarsini M et al. Comparative activity and mechanism of action of three types of bovine antimicrobial peptides against pathogenic Prototheca spp . J. Pept. Sci.18 , 105 – 113 ( 2012 ).
  • Cunha LT Pugine SMP Silva MRM Costa EJ De Melo MP . Microbicidal action of indole-3-acetic acid combined with horseradish peroxidase on Prototheca zopfii from bovine mastitis . Mycopathologia169 , 99 – 105 ( 2010 ).
  • Grzesiak B Głowacka A Krukowski H Lisowski A Lassa H Sienkiewicz M . The in vitro efficacy of essential oils and antifungal drugs against Prototheca zopfii . Mycopathologia181 , 609 – 615 ( 2016 ).
  • Bouari C Bolfa P Borza G Nadăş G Cătoi C Fiţ N . Antimicrobial activity of Mentha piperita and Saturenja hortensis in a murine model of cutaneous protothecosis . J. Mycol. Méd.24 , 34 – 43 ( 2014 ).
  • Alves AC Capra E Morandi S et al. In vitro algicidal effect of guanidine on Prototheca zopfii genotype 2 strains isolated from clinical and subclinical bovine mastitis . Lett. Appl. Microbiol.64 , 419 – 423 ( 2017 ).
  • Jain J Arora S Rajwade JM Omray P Khandelwal S Paknikar KM . Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for topical use . Mol. Pharm.6 , 1388 – 1401 ( 2009 ).
  • Rigo C Ferroni L Tocco I et al. Active silver nanoparticles for wound healing . Int. J. Mol. Sci.14 , 4817 – 4840 ( 2013 ).
  • Fayaz AM Balaji K Girilal M Kalaichelvan PT Venkatesan R . Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation . J. Agric. Food Chem.57 , 6246 – 6252 ( 2009 ).
  • Li Q Mahendra S Lyon DY et al. Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications . Water Res.42 , 4591 – 4602 ( 2008 ).
  • Chaloupka K Malam Y Seifalian AM . Nanosilver as a new generation of nanoproduct in biomedical applications . Trends Biotechnol.28 , 580 – 588 ( 2010 ).
  • Vance ME Kuiken T Vejerano EP et al. Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory . Beilstein J. Nanotechnol.6 , 1769 – 1780 ( 2015 ).
  • Ingle A Gade A Pierrat S Sonnichsen C Rai M . Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria . Curr. Nanothechnol.4 , 141 – 144 ( 2008 ).
  • Paredes D Ortiz C Torres R . Synthesis, characterization, and evaluation of antibacterial effect of Ag nanoparticles against Escherichia coli O157:H7 and methicillin-resistant Staphylococcus aureus (MRSA) . Int. J. Nanomedicine9 , 1717 – 1729 ( 2014 ).
  • Martinez F Olive PL Banuelos A et al. Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles . Nanomedicine6 , 681 – 688 ( 2010 ).
  • Kim KJ Sung WS Moon SK Choi JS Kim JG Lee DG . Antifungal effect of silver nanoparticles on dermatophytes . J. Microbiol. Biotechnol.18 , 1482 – 1484 ( 2008 ).
  • Panácek A Kolár M Vecerová R et al. Antifungal activity of silver nanoparticles against Candida spp . Biomaterials30 , 6333 – 6340 ( 2009 ).
  • Tile VA Bholay AD . Biosynthesis of silver nanoparticles and its antifungal activities . J. Environ. Res. Develop.7 , 338 – 345 ( 2012 ).
  • Lu L Sun RW Chen R et al. Silver nanoparticles inhibit hepatitis B virus replication . Antivir. Ther.13 , 253 – 262 ( 2008 ).
  • Lara HH Ayala-Nuñez NV Ixtepan-Turrent L Rodriguez-Padilla C . Mode of antiviral action of silver nanoparticles against HIV-1 . J. Nanobiotechnology8 , 1 ( 2010 ).
  • Baram-Pinto D Shukla S Perkas N Gedanken A Sarid R . Inhibition of herpes simplex virus type 1 infection by silver nanoparticles capped with mercaptoethane sulfonate . Bioconjug. Chem.20 , 1497 – 1502 ( 2009 ).
  • Murugan K Samidoss CM Panneerselvam C et al. Seaweed-synthesized silver nanoparticles: an eco-friendly tool in the fight against Plasmodium falciparum and its vector Anopheles stephensi? Parasitol. Res. 114 , 4087 – 4097 ( 2015 ).
  • Rajakumar G Rahuman AA . Acaricidal activity of aqueous extract and synthesized silver nanoparticles from Manilkara zapota against Rhipicephalus (Boophilus) microplus . Res. Vet. Sci.93 , 303 – 309 ( 2011 ).
  • Veerakumar K Govindarajan M Rajeswary M Muthukumaran U . Mosquito larvicidal properties of silver nanoparticles synthesized using Heliotropium indicum (Boraginaceae) against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus (Diptera: Culicidae) . Parasitol. Res.113 , 2363 – 2373 ( 2014 ).
  • Ong C Lim JZ Ng CT Li JJ Yung LY Bay BH . Silver nanoparticles in cancer: therapeutic efficacy and toxicity . Curr. Med. Chem.20 , 772 – 781 ( 2013 ).
  • Chwalibog A Sawosz E Hotowy A et al. Visualization of interaction between inorganic nanoparticles and bacteria or fungi . Int. J. Nanomed.5 , 1085 – 1094 ( 2010 ).
  • Zavizion B van Duffelen M Schaeffer W Politis I . Establishment and characterization of a bovine mammary epithelial cell line with unique properties . In vitro Cell Dev. Biol. Anim.32 , 138 – 148 ( 1996 ).
  • CLSI . Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeast; Approved Standard – (3rd Edition). CLSI document M27–A3 . Clinical and Laboratory Standards Institute , PA, USA ( 2008 ).
  • Jagielski T Bakuła Z Di Mauro S et al. A comparative study of the in vitro activity of iodopropynyl butylcarbamate and amphotericin B against Prototheca spp. isolates from European dairy herds . J. Dairy Sci.100 ( 9 ), 7435 – 7445 ( 2017 ).
  • Luft JH . Improvements in epoxy resin embedding methods . J. Biophys. Biochem. Cytol.9 , 409 – 414 ( 1961 ).
  • Reynollds ES . The use of lead citrate at high pH as electron-opaque stain for electron microscopy . J. Cell. Biol.17 , 208 – 213 ( 1983 ).
  • Alexander JW . History of the medical use of silver . Surg. Infect.10 , 289 – 292 ( 2009 ).
  • Zhang XF Liu ZG Shen W Gurunathan S . Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches . Int. J. Mol. Sci.17 , E1534 ( 2016 ).
  • Sweet MJ Singleton I . Silver nanoparticles: a microbial perspective . Adv. Appl. Microbiol.77 , 115 – 133 ( 2011 ).
  • Rai M Kon K Ingle A Duran N Galdiero S Galdiero M . Broad-spectrum bioactivities of silver nanoparticles: the emerging trends and future prospects . Appl. Microbiol. Biotechnol.98 , 1951 – 1961 ( 2014 ).
  • Markowska K Grudniak AM Wolska KI . Silver nanoparticles as an alternative strategy against bacterial biofilms . Acta Biochim. Pol.60 , 523 – 530 ( 2013 ).
  • Oukarroum A Bras S Perreault F Popovic R . Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta . Ecotoxicol. Environ. Saf.78 , 80 – 85 ( 2012 ).
  • Książyk M Asztemborska M Stęborowski R Bystrzejewska-Piotrowska G . Toxic effect of silver and platinum nanoparticles toward the freshwater microalga Pseudokirchneriella subcapitata . Bull. Environ. Contam. Toxicol.94 , 554 – 558 ( 2015 ).
  • Zouzelka R Cihakova P Rihova Ambrozova J Rathousky J . Combined biocidal action of silver nanoparticles and ions against Chlorococcales (Scenedesmus quadricauda, Chlorella vulgaris) and filamentous algae (Klebsormidium sp.) . Environ. Sci. Pollut. Res. Int.23 , 8317 – 8326 ( 2016 ).
  • de Camargo Z Fischman O . Prototheca stagnora, an encapsulated organism . Sabouraudia17 , 197 – 200 ( 1979 ).
  • Sobukawa H Kano R Ito T et al. In vitro susceptibility of Prototheca zopfii genotypes 1 and 2 . Med. Mycol.49 , 222 – 224 ( 2011 ).
  • Morones JR Elechiguerra JL Camacho A et al. The bactericidal effect of silver nanoparticles . Nanotechnology16 , 2346 – 2353 ( 2005 ).
  • Fayaz AM Balaji K Girilal M Yadav R Kalaichelvan PT Venketesan R . Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria . Nanomedicine6 , 103 – 109 ( 2010 ).
  • Xu Y Gao C Li X He Y Zhou L Pang G . In vitro antifungal activity of silver nanoparticles against ocular pathogenic filamentous fungi . J. Ocul. Pharmacol. Ther.29 , 270 – 274 ( 2013 ).
  • Gambardella C Costa E Piazza V et al. Effect of silver nanoparticles on marine organisms belonging to different trophic levels . Mar. Environ. Res.111 , 41 – 49 ( 2015 ).
  • Navarro E Piccapietra F Wagner B et al. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii . Environ. Sci. Technol.42 , 8959 – 8964 ( 2008 ).
  • Conte MV Pore RS . Taxonomic implications of Prototheca and Chlorella cell wall polysaccharide characterization . Arch. Mikrobiol.92 , 227 – 233 ( 1973 ).
  • Jiravova J Tomankova KB Harvanova M et al. The effect of silver nanoparticles and silver ions on mammalian and plant cells in vitro . Food Chem. Toxicol.96 , 50 – 61 ( 2016 ).
  • Wang S Lv J Ma J Zhang S . Cellular internalization and intracellular biotransformation of silver nanoparticles in Chlamydomonas reinhardtii . Nanotoxicology10 , 1129 – 1135 ( 2016 ).
  • Melville PA Benites NR Sinhorini IL Costa EO . Susceptibility and features of the ultrastructure of Prototheca zopfii following exposure to copper sulphate, silver nitrate and chlorexidine . Mycopathologia156 , 1 – 7 ( 2002 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.