381
Views
0
CrossRef citations to date
0
Altmetric
Review

Nanoscaffolds in Promoting Regeneration of the Peripheral Nervous System

, , , , , & show all
Pages 1067-1085 | Received 21 Dec 2017, Accepted 01 Mar 2018, Published online: 23 May 2018

References

  • Gu X Ding F Williams DF . Neural tissue engineering options for peripheral nerve regeneration . Biomaterials35 ( 24 ), 6143 – 6156 ( 2014 ).
  • Gu X Ding F Yang Y Liu J . Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration . Prog. Neurobiol.93 ( 2 ), 204 – 230 ( 2011 ).
  • Wakatsuki S Saitoh F Araki T . ZNRF1 promotes Wallerian degeneration by degrading AKT to induce GSK3B-dependent CRMP2 phosphorylation . Nat. Cell Biol.13 ( 12 ), 1415 – 1423 ( 2011 ).
  • Bosse F Hasenpusch-Theil K Kury P Muller HW . Gene expression profiling reveals that peripheral nerve regeneration is a consequence of both novel injury-dependent and reactivated developmental processes . J. Neurochem.96 ( 5 ), 1441 – 1457 ( 2006 ).
  • Yao D Li M Shen D et al. Expression changes and bioinformatic analysis of Wallerian degeneration after sciatic nerve injury in rat . Neurosci. Bull.29 ( 3 ), 321 – 332 ( 2013 ).
  • Pita-Thomas W Barroso-Garcia G Moral V Hackett AR Cavalli V Nieto-Diaz M . Identification of axon growth promoters in the secretome of the deer antler velvet . Neuroscience340 , 333 – 344 ( 2017 ).
  • Jacobson S Guth L . An electrophysiological study of the early stages of peripheral nerve regeneration . Exp. Neurol.11 , 48 – 60 ( 1965 ).
  • Noble J Munro CA Prasad VS Midha R . Analysis of upper and lower extremity peripheral nerve injuries in a population of patients with multiple injuries . J. Trauma45 ( 1 ), 116 – 122 ( 1998 ).
  • Marinescu SA Zarnescu O Mihai IR Giuglea C Sinescu RD . An animal model of peripheral nerve regeneration after the application of a collagen-polyvinyl alcohol scaffold and mesenchymal stem cells . Rom. J. Morphol. Embryol.55 ( 3 ), 891 – 903 ( 2014 ).
  • Mackinnon SE Hudson AR . Clinical application of peripheral nerve transplantation . Plast. Reconstr. Surg.90 ( 4 ), 695 – 699 ( 1992 ).
  • Sivolella S Brunello G Ferrarese N et al. Nanostructured guidance for peripheral nerve injuries: a review with a perspective in the oral and maxillofacial area . Int. J. Mol. Sci.15 ( 2 ), 3088 – 3117 ( 2014 ).
  • Gnavi S Fornasari BE Tonda-Turo C et al. The effect of electrospun gelatin fibers alignment on Schwann cell and axon behavior and organization in the perspective of artificial nerve design . Int. J. Mol. Sci.16 ( 6 ), 12925 – 12942 ( 2015 ).
  • Wang TY Forsythe JS Parish CL Nisbet DR . Biofunctionalisation of polymeric scaffolds for neural tissue engineering . J. Biomater. Appl.27 ( 4 ), 369 – 390 ( 2012 ).
  • Quigley AF Bulluss KJ Kyratzis IL et al. Engineering a multimodal nerve conduit for repair of injured peripheral nerve . J. Neural Eng.10 ( 1 ), 016008 ( 2013 ).
  • Bleeker EA De Jong WH Geertsma RE et al. Considerations on the EU definition of a nanomaterial: science to support policy making . Regul. Toxicol. Pharmacol.65 ( 1 ), 119 – 125 ( 2013 ).
  • Singh D Singh D Zo S Han SS . Nano-biomimetics for nano/micro tissue regeneration . J. Biomed. Nanotechnol.10 ( 10 ), 3141 – 3161 ( 2014 ).
  • Dahlin RL Kasper FK Mikos AG . Polymeric nanofibers in tissue engineering . Tissue Eng. Part B Rev.17 ( 5 ), 349 – 364 ( 2011 ).
  • Arslantunali D Budak G Hasirci V . Multiwalled CNT-pHEMA composite conduit for peripheral nerve repair . J. Biomed. Mater. Res. A102 ( 3 ), 828 – 841 ( 2014 ).
  • Wang CY Liu JJ Fan CY Mo XM Ruan HJ Li FF . The effect of aligned core-shell nanofibres delivering NGF on the promotion of sciatic nerve regeneration . J. Biomater. Sci. Polym. Ed.23 ( 1–4 ), 167 – 184 ( 2012 ).
  • Kuihua Z Chunyang W Cunyi F Xiumei M . Aligned SF/P(LLA-CL)-blended nanofibers encapsulating nerve growth factor for peripheral nerve regeneration . J. Biomed. Mater. Res. A102 ( 8 ), 2680 – 2691 ( 2014 ).
  • Demirbilek M Sakar M Karahaliloglu Z et al. Aligned bacterial PHBV nanofibrous conduit for peripheral nerve regeneration . Artif. Cells Nanomed. Biotechnol.43 ( 4 ), 243 – 251 ( 2015 ).
  • Biazar E Keshel SH . Chitosan-cross-linked nanofibrous PHBV nerve guide for rat sciatic nerve regeneration across a defect bridge . ASAIO J.59 ( 6 ), 651 – 659 ( 2013 ).
  • Li A Hokugo A Yalom A et al. A bioengineered peripheral nerve construct using aligned peptide amphiphile nanofibers . Biomaterials35 ( 31 ), 8780 – 8790 ( 2014 ).
  • Ahn HS Hwang JY Kim MS et al. Carbon-nanotube-interfaced glass fiber scaffold for regeneration of transected sciatic nerve . Acta Biomater.13 , 324 – 334 ( 2015 ).
  • Panseri S Cunha C Lowery J et al. Electrospun micro- and nanofiber tubes for functional nervous regeneration in sciatic nerve transections . BMC Biotechnol.8 , 39 ( 2008 ).
  • Zhang H Wang K Xing Y Yu Q . Lysine-doped polypyrrole/spider silk protein/poly(l-lactic) acid containing nerve growth factor composite fibers for neural application . Mater. Sci. Eng. C Mater. Biol. Appl.56 , 564 – 573 ( 2015 ).
  • Kabiri M Oraee-Yazdani S Shafiee A et al. Neuroregenerative effects of olfactory ensheathing cells transplanted in a multi-layered conductive nanofibrous conduit in peripheral nerve repair in rats . J. Biomed. Sci.22 , 35 ( 2015 ).
  • Ding T Luo ZJ Zheng Y Hu XY Ye ZX . Rapid repair and regeneration of damaged rabbit sciatic nerves by tissue-engineered scaffold made from nano-silver and collagen type I . Injury41 ( 5 ), 522 – 527 ( 2010 ).
  • Ding T Lu WW Zheng Y Li Z Pan H Luo Z . Rapid repair of rat sciatic nerve injury using a nanosilver-embedded collagen scaffold coated with laminin and fibronectin . Regen. Med.6 ( 4 ), 437 – 447 ( 2011 ).
  • Chang YC Chen MH Liao SY et al. Multichanneled nerve guidance conduit with spatial gradients of neurotrophic factors and oriented nanotopography for repairing the peripheral nervous system . ACS Appl. Mater. Interfaces9 ( 43 ), 37623 – 37636 ( 2017 ).
  • Hu FH Zhang XF Liu HX et al. Neuronally differentiated adipose-derived stem cells and aligned PHBV nanofiber nerve scaffolds promote sciatic nerve regeneration . Biochem. Biophys. Res. Commun.489 ( 2 ), 171 – 178 ( 2017 ).
  • Liu ZY Zhu S Liu L et al. A magnetically responsive nanocomposite scaffold combined with Schwann cells promotes sciatic nerve regeneration upon exposure to magnetic field . Int. J. Nanomed.12 , 7815 – 7832 ( 2017 ).
  • Xia B Lv YG . Dual-delivery of VEGF and NGF by emulsion electrospun nanofibrous scaffold for peripheral nerve regeneration . Mat. Sci. Eng .C-Mater.82 , 253 – 264 ( 2018 ).
  • Zhan X Gao M Jiang Y et al. Nanofiber scaffolds facilitate functional regeneration of peripheral nerve injury . Nanomedicine9 ( 3 ), 305 – 315 ( 2013 ).
  • Xie J Macewan MR Liu W et al. Nerve guidance conduits based on double-layered scaffolds of electrospun nanofibers for repairing the peripheral nervous system . ACS Appl. Mater. Interfaces6 ( 12 ), 9472 – 9480 ( 2014 ).
  • Hackelberg S Tuck SJ He L et al. Nanofibrous scaffolds for the guidance of stem cell-derived neurons for auditory nerve regeneration . PLoS ONE12 ( 7 ), e018042 ( 2017 ).
  • Yang Y Ding F Wu J et al. Development and evaluation of silk fibroin-based nerve grafts used for peripheral nerve regeneration . Biomaterials28 ( 36 ), 5526 – 5535 ( 2007 ).
  • Liu T Teng WK Chan BP Chew SY . Photochemical crosslinked electrospun collagen nanofibers: synthesis, characterization and neural stem cell interactions . J. Biomed. Mater. Res. A95 ( 1 ), 276 – 282 ( 2010 ).
  • Lewitus DY Landers J Branch J et al. Biohybrid carbon nanotube/agarose fibers for neural tissue engineering . Adv. Funct. Mater.21 ( 14 ), 2624 – 2632 ( 2011 ).
  • Hu A Zuo B Zhang F Lan Q Zhang H . Electrospun silk fibroin nanofibers promote Schwann cell adhesion, growth and proliferation . Neural Regen. Res.7 ( 15 ), 1171 – 1178 ( 2012 ).
  • Das S Sharma M Saharia D et al. In vivo studies of silk based gold nano-composite conduits for functional peripheral nerve regeneration . Biomaterials62 , 66 – 75 ( 2015 ).
  • Freier T Koh HS Kazazian K Shoichet MS . Controlling cell adhesion and degradation of chitosan films by N-acetylation . Biomaterials26 ( 29 ), 5872 – 5878 ( 2005 ).
  • Qu T Jing J Ren Y et al. Complete pulpodentin complex regeneration by modulating the stiffness of biomimetic matrix . Acta Biomater.16 , 60 – 70 ( 2015 ).
  • Zhu W O'brien C O'brien JR Zhang LG . 3D nano/microfabrication techniques and nanobiomaterials for neural tissue regeneration . Nanomedicine (Lond.)9 ( 6 ), 859 – 875 ( 2014 ).
  • Fraczek-Szczypta A . Carbon nanomaterials for nerve tissue stimulation and regeneration . Mater. Sci. Eng. C Mater. Biol. Appl.34 , 35 – 49 ( 2014 ).
  • Baughman RH Zakhidov AA De Heer WA . Carbon nanotubes – the route toward applications . Science297 ( 5582 ), 787 – 792 ( 2002 ).
  • Caoduro C Hervouet E Girard-Thernier C et al. Carbon nanotubes as gene carriers: focus on internalization pathways related to functionalization and properties . Acta Biomater.49 , 36 – 44 ( 2017 ).
  • Akhavan O . Graphene scaffolds in progressive nanotechnology/stem cell-based tissue engineering of the nervous system . J. Mater. Chem. B4 ( 19 ), 3169 – 3190 ( 2016 ).
  • Fabbro A Prato M Ballerini L . Carbon nanotubes in neuroregeneration and repair . Adv. Drug Deliv. Rev.65 ( 15 ), 2034 – 2044 ( 2013 ).
  • Hong SW Lee JH Kang SH et al. Enhanced neural cell adhesion and neurite outgrowth on graphene-based biomimetic substrates . BioMed Res. Int. 2014 , 212149 ( 2014 ).
  • Jin GZ Kim M Shin US Kim HW . Neurite outgrowth of dorsal root ganglia neurons is enhanced on aligned nanofibrous biopolymer scaffold with carbon nanotube coating . Neurosci. Lett.501 ( 1 ), 10 – 14 ( 2011 ).
  • Yu W Jiang X Cai M et al. A novel electrospun nerve conduit enhanced by carbon nanotubes for peripheral nerve regeneration . Nanotechnology25 ( 16 ), 165102 ( 2014 ).
  • Baniasadi H Ramazani SAA Mashayekhan S . Fabrication and characterization of conductive chitosan/gelatin-based scaffolds for nerve tissue engineering . Int. J. Biol. Macromol.74 , 360 – 366 ( 2015 ).
  • Kijenska E Prabhakaran MP Swieszkowski W Kurzydlowski KJ Ramakrishna S . Electrospun bio-composite P(LLA-CL)/collagen I/collagen III scaffolds for nerve tissue engineering . J. Biomed. Mater. Res. B Appl. Biomater.100 ( 4 ), 1093 – 1102 ( 2012 ).
  • Cooper A Bhattarai N Zhang MQ . Fabrication and cellular compatibility of aligned chitosan-PCL fibers for nerve tissue regeneration . Carbohydr. Polym.85 ( 1 ), 149 – 156 ( 2011 ).
  • Carr MJ Johnston AP . Schwann cells as drivers of tissue repair and regeneration . Curr. Opin. Neurobiol.47 , 52 – 57 ( 2017 ).
  • Biazar E Heidari Keshel S . A nanofibrous PHBV tube with Schwann cell as artificial nerve graft contributing to rat sciatic nerve regeneration across a 30-mm defect bridge . Cell Commun. Adhes.20 ( 1–2 ), 41 – 49 ( 2013 ).
  • Masaeli E Wieringa PA Morshed M et al. Peptide functionalized polyhydroxyalkanoate nanofibrous scaffolds enhance Schwann cells activity . Nanomedicine10 ( 7 ), 1559 – 1569 ( 2014 ).
  • Kotwal A Schmidt CE . Electrical stimulation alters protein adsorption and nerve cell interactions with electrically conducting biomaterials . Biomaterials22 ( 10 ), 1055 – 1064 ( 2001 ).
  • Yang A Huang Z Yin G Pu X . Fabrication of aligned, porous and conductive fibers and their effects on cell adhesion and guidance . Colloids Surf. B Biointerfaces134 , 469 – 474 ( 2015 ).
  • Schmidt CE Shastri VR Vacanti JP Langer R . Stimulation of neurite outgrowth using an electrically conducting polymer . Proc. Natl Acad. Sci. USA94 ( 17 ), 8948 – 8953 ( 1997 ).
  • Zhou X Yang A Huang Z Yin G Pu X Jin J . Enhancement of neurite adhesion, alignment and elongation on conductive polypyrrole-poly(lactide acid) fibers with cell-derived extracellular matrix . Colloids Surf. B Biointerfaces149 , 217 – 225 ( 2017 ).
  • Hudson TW Evans GR Schmidt CE . Engineering strategies for peripheral nerve repair . Clin. Plast. Surg.26 ( 4 ), 617 – 628 , ix ( 1999 ).
  • Heo C Yoo J Lee S et al. The control of neural cell-to-cell interactions through non-contact electrical field stimulation using graphene electrodes . Biomaterials32 ( 1 ), 19 – 27 ( 2011 ).
  • Akhavan O Ghaderi E Shirazian SA Rahighi R . Rolled graphene oxide foams as three-dimensional scaffolds for growth of neural fibers using electrical stimulation of stem cells . Carbon97 , 71 – 77 ( 2016 ).
  • Poggetti A Battistini P Parchi PD et al. How to direct the neuronal growth process in peripheral nerve regeneration: future strategies for nanosurfaces scaffold and magnetic nanoparticles . Surg. Technol. Int.30 , 458 – 461 ( 2017 ).
  • Poggetti A Battistini P Paolo PD . Nanosurfaces scaffold and magnetic nanoparticles to direct the neuronal growth process: future strategies for peripheral nerve regeneration . J. Orthop. Case Reports6 ( 1 ), 3 – 4 ( 2016 ).
  • Liu Z Huang L Liu L et al. Activation of Schwann cells in vitro by magnetic nanocomposites via applied magnetic field . Int. J. Nanomedicine10 , 43 – 61 ( 2015 ).
  • Zuidema JM Provenza C Caliendo T Dutz S Gilbert RJ . Magnetic NGF-releasing PLLA/iron oxide nanoparticles direct extending neurites and preferentially guide neurites along aligned electrospun microfibers . ACS Chem. Neurosci.6 ( 11 ), 1781 – 1788 ( 2015 ).
  • Liu M Zhou G Hou Y et al. Effect of nano-hydroxyapatite-coated magnetic nanoparticles on axonal guidance growth of rat dorsal root ganglion neurons . J. Biomed. Mater. Res. A103 ( 9 ), 3066 – 3071 ( 2015 ).
  • Giannaccini M Calatayud MP Poggetti A et al. Magnetic nanoparticles for efficient delivery of growth factors: stimulation of peripheral nerve regeneration . Adv. Healthc. Mater. doi:10.1002/adhm.201601429 ( 2017 ) ( Epub ahead of print ).
  • Lin H Dhanani N Tseng H et al. Nanoparticle improved stem cell therapy for erectile dysfunction in a rat model of cavernous nerve injury . J. Urol.195 ( 3 ), 788 – 795 ( 2016 ).
  • Zhu Y Yang Q Yang M et al. Protein corona of magnetic hydroxyapatite scaffold improves cell proliferation via activation of mitogen-activated protein kinase signaling pathway . ACS Nano11 ( 4 ), 3690 – 3704 ( 2017 ).
  • Corey JM Gertz CC Wang BS et al. The design of electrospun PLLA nanofiber scaffolds compatible with serum-free growth of primary motor and sensory neurons . Acta Biomater.4 ( 4 ), 863 – 875 ( 2008 ).
  • Schnell E Klinkhammer K Balzer S et al. Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-epsilon-caprolactone and a collagen/poly-epsilon-caprolactone blend . Biomaterials28 ( 19 ), 3012 – 3025 ( 2007 ).
  • Mahoney MJ Chen RR Tan J Saltzman WM . The influence of microchannels on neurite growth and architecture . Biomaterials26 ( 7 ), 771 – 778 ( 2005 ).
  • Akhavan O Ghaderi E . Differentiation of human neural stem cells into neural networks on graphene nanogrids . J. Mater. Chem. B1 ( 45 ), 6291 – 6301 ( 2013 ).
  • Wang Y Lee WC Manga KK et al. Fluorinated graphene for promoting neuro-induction of stem cells . Adv. Mater.24 ( 31 ), 4285 – 4290 ( 2012 ).
  • Mu Y Wu F Lu Y Wei L Yuan W . Progress of electrospun fibers as nerve conduits for neural tissue repair . Nanomedicine (Lond.)9 ( 12 ), 1869 – 1883 ( 2014 ).
  • Wang A Ao Q Cao W et al. Porous chitosan tubular scaffolds with knitted outer wall and controllable inner structure for nerve tissue engineering . J. Biomed. Mater. Res. A79 ( 1 ), 36 – 46 ( 2006 ).
  • Den Braber ET De Ruijter JE Ginsel LA Von Recum AF Jansen JA . Orientation of ECM protein deposition, fibroblast cytoskeleton, and attachment complex components on silicone microgrooved surfaces . J. Biomed. Mater. Res.40 ( 2 ), 291 – 300 ( 1998 ).
  • Chew SY Mi R Hoke A Leong KW . The effect of the alignment of electrospun fibrous scaffolds on Schwann cell maturation . Biomaterials29 ( 6 ), 653 – 661 ( 2008 ).
  • Xie J Macewan MR Li X Sakiyama-Elbert SE Xia Y . Neurite outgrowth on nanofiber scaffolds with different orders, structures, and surface properties . ACS Nano3 ( 5 ), 1151 – 1159 ( 2009 ).
  • Satish A Korrapati PS . Tailored release of triiodothyronine and retinoic acid from a spatio-temporally fabricated nanofiber composite instigating neuronal differentiation . Nanoscale9 ( 38 ), 14565 – 14580 ( 2017 ).
  • Xia H Chen Q Fang Y et al. Directed neurite growth of rat dorsal root ganglion neurons and increased colocalization with Schwann cells on aligned poly(methyl methacrylate) electrospun nanofibers . Brain Res.1565 , 18 – 27 ( 2014 ).
  • Xie JW Macewan MR Li XR Sakiyama-Elbert SE Xia YN . Neurite outgrowth on nanofiber scaffolds with different orders, structures, and surface properties . ACS Nano3 ( 5 ), 1151 – 1159 ( 2009 ).
  • Mitchel JA Hoffman-Kim D . Cellular scale anisotropic topography guides Schwann cell motility . PLoS ONE6 ( 9 ), e24316 ( 2011 ).
  • Akhavan O Ghaderi E Abouei E Hatamie S Ghasemi E . Accelerated differentiation of neural stem cells into neurons on ginseng-reduced graphene oxide sheets . Carbon66 , 395 – 406 ( 2014 ).
  • Tang M Song Q Li N Jiang Z Huang R Cheng G . Enhancement of electrical signaling in neural networks on graphene films . Biomaterials34 ( 27 ), 6402 – 6411 ( 2013 ).
  • Akhavan O Ghaderi E . Flash photo stimulation of human neural stem cells on graphene/TiO2 heterojunction for differentiation into neurons . Nanoscale5 ( 21 ), 10316 – 10326 ( 2013 ).
  • Akhavan O Ghaderi E Shirazian SA . Near infrared laser stimulation of human neural stem cells into neurons on graphene nanomesh semiconductors . Colloids Surf. B Biointerfaces126 , 313 – 321 ( 2015 ).
  • Akhavan O Ghaderi E . The use of graphene in the self-organized differentiation of human neural stem cells into neurons under pulsed laser stimulation . J. Mater. Chem. B2 ( 34 ), 5602 – 5611 ( 2014 ).
  • Khan N Smith MT . Neurotrophins and neuropathic pain: role in pathobiology . Molecules20 ( 6 ), 10657 – 10688 ( 2015 ).
  • Karagyaur M Dyikanov D Makarevich P et al. Non-viral transfer of BDNF and uPA stimulates peripheral nerve regeneration . Biomed. Pharmacother.74 , 63 – 70 ( 2015 ).
  • Xiang Y Ding N Xing Z Zhang W Liu H Li Z . Insulin-like growth factor-1 regulates neurite outgrowth and neuronal migration from organotypic cultured dorsal root ganglion . Int. J. Neurosci.121 ( 2 ), 101 – 106 ( 2011 ).
  • Xing J Lu J Li J . Nerve growth factor decreases in sympathetic and sensory nerves of rats with chronic heart failure . Neurochem. Res.39 ( 8 ), 1564 – 1570 ( 2014 ).
  • Chen WH Mao CQ Zhuo LL Ong JL . Beta-nerve growth factor promotes neurogenesis and angiogenesis during the repair of bone defects . Neural Regen. Res.10 ( 7 ), 1159 – 1165 ( 2015 ).
  • Tang S Zhu J Xu Y Xiang AP Jiang MH Quan D . The effects of gradients of nerve growth factor immobilized PCLA scaffolds on neurite outgrowth in vitro and peripheral nerve regeneration in rats . Biomaterials34 ( 29 ), 7086 – 7096 ( 2013 ).
  • Jin J Limburg S Joshi SK et al. Peripheral nerve repair in rats using composite hydrogel-filled aligned nanofiber conduits with incorporated nerve growth factor . Tissue Eng. A19 ( 19–20 ), 2138 – 2146 ( 2013 ).
  • Dinis TM Vidal G Jose RR et al. Complementary effects of two growth factors in multifunctionalized silk nanofibers for nerve reconstruction . PLoS ONE9 ( 10 ), e109770 ( 2014 ).
  • Kim YG Kim JW Pyeon HJ et al. Differential stimulation of neurotrophin release by the biocompatible nano-material (carbon nanotube) in primary cultured neurons . J. Biomater. Appl.28 ( 5 ), 790 – 797 ( 2014 ).
  • Weishaupt N Blesch A Fouad K . BDNF: the career of a multifaceted neurotrophin in spinal cord injury . Exp. Neurol.238 ( 2 ), 254 – 264 ( 2012 ).
  • Takemura Y Imai S Kojima H et al. Brain-derived neurotrophic factor from bone marrow-derived cells promotes post-injury repair of peripheral nerve . PLoS ONE7 ( 9 ), e44592 ( 2012 ).
  • Wise AK Tan J Wang Y Caruso F Shepherd RK . Improved auditory nerve survival with nanoengineered supraparticles for neurotrophin delivery into the deafened cochlea . PLoS ONE11 ( 10 ), e0164867 ( 2016 ).
  • Cao J Xiao Z Jin W et al. Induction of rat facial nerve regeneration by functional collagen scaffolds . Biomaterials34 ( 4 ), 1302 – 1310 ( 2013 ).
  • Noren Hooten N Ejiogu N Zonderman AB Evans MK . Protective effects of BDNF against C-reactive protein-induced inflammation in women . Mediat. Inflamm. 2015 , 516783 ( 2015 ).
  • Jiang Y Wei N Lu T Zhu J Xu G Liu X . Intranasal brain-derived neurotrophic factor protects brain from ischemic insult via modulating local inflammation in rats . Neuroscience172 , 398 – 405 ( 2011 ).
  • Pasquin S Sharma M Gauchat JF . Ciliary neurotrophic factor (CNTF): new facets of an old molecule for treating neurodegenerative and metabolic syndrome pathologies . Cytokine Growth Factor Rev.26 ( 5 ), 507 – 515 ( 2015 ).
  • Ding J He Z Ruan J et al. Role of ciliary neurotrophic factor in the proliferation and differentiation of neural stem cells . J. Alzheimers Dis.37 ( 3 ), 587 – 592 ( 2013 ).
  • Dinis TM Elia R Vidal G et al. 3D multi-channel bi-functionalized silk electrospun conduits for peripheral nerve regeneration . J. Mech. Behav. Biomed. Mater.41 , 43 – 55 ( 2015 ).
  • Zhang L Ma Z Smith GM et al. GDNF-enhanced axonal regeneration and myelination following spinal cord injury is mediated by primary effects on neurons . Glia57 ( 11 ), 1178 – 1191 ( 2009 ).
  • Hoke A Ho T Crawford TO Lebel C Hilt D Griffin JW . Glial cell line-derived neurotrophic factor alters axon Schwann cell units and promotes myelination in unmyelinated nerve fibers . J. Neurosci.23 ( 2 ), 561 – 567 ( 2003 ).
  • Assuncao-Silva RC Oliveira CC Ziv-Polat O et al. Induction of neurite outgrowth in 3D hydrogel-based environments . Biomed. Mater.10 ( 5 ), 051001 ( 2015 ).
  • Bikfalvi A Klein S Pintucci G Rifkin DB . Biological roles of fibroblast growth factor-2 . Endocr. Rev.18 ( 1 ), 26 – 45 ( 1997 ).
  • Allodi I Casals-Diaz L Santos-Nogueira E Gonzalez-Perez F Navarro X Udina E . FGF-2 low molecular weight selectively promotes neuritogenesis of motor neurons in vitro . Mol. Neurobiol.47 ( 2 ), 770 – 781 ( 2013 ).
  • Ziv-Polat O Shahar A Levy I et al. The role of neurotrophic factors conjugated to iron oxide nanoparticles in peripheral nerve regeneration: in vitro studies . BioMed Res. Int. 2014 , 267808 ( 2014 ).
  • Robinson RC Radziejewski C Spraggon G et al. The structures of the neurotrophin 4 homodimer and the brain-derived neurotrophic factor/neurotrophin 4 heterodimer reveal a common Trk-binding site . Protein Sci.8 ( 12 ), 2589 – 2597 ( 1999 ).
  • Coumans JV Lin TT Dai HN et al. Axonal regeneration and functional recovery after complete spinal cord transection in rats by delayed treatment with transplants and neurotrophins . J. Neurosci.21 ( 23 ), 9334 – 9344 ( 2001 ).
  • Grill R Murai K Blesch A Gage FH Tuszynski MH . Cellular delivery of neurotrophin-3 promotes corticospinal axonal growth and partial functional recovery after spinal cord injury . J. Neurosci.17 ( 14 ), 5560 – 5572 ( 1997 ).
  • Stanwick JC Baumann MD Shoichet MS . Enhanced neurotrophin-3 bioactivity and release from a nanoparticle-loaded composite hydrogel . J. Control. Rel.160 ( 3 ), 666 – 675 ( 2012 ).
  • Gao X Wang Y Chen J Peng J . The role of peripheral nerve ECM components in the tissue engineering nerve construction . Rev. Neurosci.24 ( 4 ), 443 – 453 ( 2013 ).
  • Koh HS Yong T Chan CK Ramakrishna S . Enhancement of neurite outgrowth using nano-structured scaffolds coupled with laminin . Biomaterials29 ( 26 ), 3574 – 3582 ( 2008 ).
  • Huang YC Hsu SH Kuo WC Chang-Chien CL Cheng H Huang YY . Effects of laminin-coated carbon nanotube/chitosan fibers on guided neurite growth . J. Biomed. Mater. Res. A99 ( 1 ), 86 – 93 ( 2011 ).
  • Neal RA Tholpady SS Foley PL Swami N Ogle RC Botchwey EA . Alignment and composition of laminin-polycaprolactone nanofiber blends enhance peripheral nerve regeneration . J. Biomed. Mater. Res. A100 ( 2 ), 406 – 423 ( 2012 ).
  • Zhang Z Yu B Gu Y et al. Fibroblast-derived tenascin-C promotes Schwann cell migration through β1-integrin dependent pathway during peripheral nerve regeneration . Glia64 ( 3 ), 374 – 385 ( 2016 ).
  • Wen X Wang Y Guo Z et al. Cauda equina-derived extracellular matrix for fabrication of nanostructured hybrid scaffolds applied to neural tissue engineering . Tissue Eng. A21 ( 5–6 ), 1095 – 1105 ( 2015 ).
  • Nune M Subramanian A Krishnan UM Kaimal SS Sethuraman S . Self-assembling peptide nanostructures on aligned poly(lactide-co-glycolide) nanofibers for the functional regeneration of sciatic nerve . Nanomedicine (Lond.)12 ( 3 ), 219 – 235 ( 2017 ).
  • Mokarram N Merchant A Mukhatyar V Patel G Bellamkonda RV . Effect of modulating macrophage phenotype on peripheral nerve repair . Biomaterials33 ( 34 ), 8793 – 8801 ( 2012 ).
  • Murray PJ Wynn TA . Protective and pathogenic functions of macrophage subsets . Nat. Rev. Immunol.11 ( 11 ), 723 – 737 ( 2011 ).
  • Potas JR Haque F Maclean FL Nisbet DR . Interleukin-10 conjugated electrospun polycaprolactone (PCL) nanofibre scaffolds for promoting alternatively activated (M2) macrophages around the peripheral nerve in vivo . J. Immunol. Methods420 , 38 – 49 ( 2015 ).
  • Luo L He Y Chang Q et al. Polycaprolactone nanofibrous mesh reduces foreign body reaction and induces adipose flap expansion in tissue engineering chamber . Int. J. Nanomedicine11 , 6471 – 6483 ( 2016 ).
  • Biazar E Heidari Keshel S . Development of chitosan-crosslinked nanofibrous PHBV guide for repair of nerve defects . Artif. Cells Nanomed. Biotechnol.42 ( 6 ), 385 – 391 ( 2014 ).
  • Yamazaki M Chiba K Mohri T . Neuritogenic effect of natural iridoid compounds on PC12h cells and its possible relation to signaling protein kinases . Biol. Pharm. Bull.19 ( 6 ), 791 – 795 ( 1996 ).
  • Guo JH Liu Y Lv ZJ et al. Potential neurogenesis of human adipose-derived stem cells on electrospun catalpol-loaded composite nanofibrous scaffolds . Ann. Biomed. Eng.43 ( 10 ), 2597 – 2608 ( 2015 ).
  • Freier T Montenegro R Shan Koh H Shoichet MS . Chitin-based tubes for tissue engineering in the nervous system . Biomaterials26 ( 22 ), 4624 – 4632 ( 2005 ).
  • Kim DY Choi YS Kim SE et al. In vivo effects of adipose-derived stem cells in inducing neuronal regeneration in Sprague–Dawley rats undergoing nerve defect bridged with polycaprolactone nanotubes . J. Korean Med. Sci.29 ( Suppl. 3 ), S183 – S192 ( 2014 ).
  • Matsumoto K Sato C Naka Y Whitby R Shimizu N . Stimulation of neuronal neurite outgrowth using functionalized carbon nanotubes . Nanotechnology21 ( 11 ), 115101 ( 2010 ).
  • Napoli I Noon LA Ribeiro S et al. A central role for the ERK-signaling pathway in controlling Schwann cell plasticity and peripheral nerve regeneration in vivo . Neuron73 ( 4 ), 729 – 742 ( 2012 ).
  • Matsumoto K Shimizu N . Activation of the phospholipase C signaling pathway in nerve growth factor-treated neurons by carbon nanotubes . Biomaterials34 ( 24 ), 5988 – 5994 ( 2013 ).
  • Zhu Y Yang J Yang MG et al. Protein corona of magnetic hydroxyapatite scaffold improves cell proliferation via activation of mitogen-activated protein kinase signaling pathway . ACS Nano11 ( 4 ), 3690 – 3704 ( 2017 ).
  • Yu Y Meng D Man L Wang X . The interactions between aligned Poly(L-Lactic Acid) nanofibers and SH-SY5Y cells in vitro . J. Nanosci. Nanotechnol.16 ( 6 ), 6407 – 6413 ( 2016 ).
  • Yu Y Lu X Ding F . Influence of Poly(L-Lactic Acid) aligned nanofibers on PC12 differentiation . J. Biomed. Nanotechnol.11 ( 5 ), 816 – 827 ( 2015 ).
  • Bartel DP . MicroRNAs: genomics, biogenesis, mechanism, and function . Cell116 ( 2 ), 281 – 297 ( 2004 ).
  • Lewis BP Burge CB Bartel DP . Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets . Cell120 ( 1 ), 15 – 20 ( 2005 ).
  • Yu Y Lu X Ding F . microRNA regulatory mechanism by which PLLA aligned nanofibers influence PC12 cell differentiation . J. Neural Eng.12 ( 4 ), 046010 ( 2015 ).
  • Mercado AT Yeh JM Chin TY Chen WS Chen-Yang YW Chen CY . The effect of chemically modified electrospun silica nanofiber on the mRNA and miRNA expression profile of neural stem cell differentiation . J. Biomed. Mater. Res. A104 ( 11 ), 2730 – 2743 ( 2016 ).
  • Wang Y Yao M Zhou J et al. The promotion of neural progenitor cells proliferation by aligned and randomly oriented collagen nanofibers through β1 integrin/MAPK signaling pathway . Biomaterials32 ( 28 ), 6737 – 6744 ( 2011 ).
  • Daranarong D Chan RT Wanandy NS Molloy R Punyodom W Foster LJ . Electrospun polyhydroxybutyrate and poly(L-lactide-co-epsilon-caprolactone) composites as nanofibrous scaffolds . BioMed Res. Int. 2014 , 741408 ( 2014 ).
  • He B Zhu Q Chai Y et al. Safety and efficacy evaluation of a human acellular nerve graft as a digital nerve scaffold: a prospective, multicentre controlled clinical trial . J. Tissue Eng. Regen. Med.9 ( 3 ), 286 – 295 ( 2015 ).
  • Ichihara S Inada Y Nakamura T . Artificial nerve tubes and their application for repair of peripheral nerve injury: an update of current concepts . Injury39 ( Suppl. 4 ), 29 – 39 ( 2008 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.