462
Views
0
CrossRef citations to date
0
Altmetric
Review

Biomedical Applications of Nanoceria: New Roles for an Old Player

, , , , , , , & show all
Pages 3051-3069 | Received 02 Jun 2018, Accepted 26 Sep 2018, Published online: 03 Dec 2018

References

  • Langer R Vacanti JP . Tissue engineering . Science260 ( 5110 ), 920 ( 1993 ).
  • Kargozar S Lotfibakhshaiesh N Ai J et al. Strontium- and cobalt-substituted bioactive glasses seeded with human umbilical cord perivascular cells to promote bone regeneration via enhanced osteogenic and angiogenic activities . Acta Biomater.58 ( Supplement C ), 502 – 514 ( 2017 ).
  • Kargozar S Hashemian SJ Soleimani M et al. Acceleration of bone regeneration in bioactive glass/gelatin composite scaffolds seeded with bone marrow-derived mesenchymal stem cells over-expressing bone morphogenetic protein-7 . Mater. Sci. Eng. C75 ( Supplement C ), 688 – 698 ( 2017 ).
  • Hutmacher D Cool S . Concepts of scaffold-based tissue engineering – the rationale to use solid free-form fabrication techniques . J. Cell. Mol. Med.11 ( 4 ), 654 – 669 ( 2007 ).
  • DuRaine GD Brown WE Hu JC Athanasiou KA . Emergence of scaffold-free approaches for tissue engineering musculoskeletal cartilages . Ann. Biomed. Eng.43 ( 3 ), 543 – 554 ( 2015 ).
  • Masoud M Rajadas J Kaplan DL . Nanoengineered biomaterials for regenerative medicine . MasoudMRajadasJKaplanDJ . ( Eds ) In:Nanoengineered Biomaterials for Regenerative MedicineElsevier , 1 – 11 ( 2019 ).
  • Masoud Mozafari , Nanotechnology in wound care: one step closer to the clinic . Molecular Therapy26 ( 9 ), 2085 – 2086 ( 2018 ).
  • Naghavi Alhosseini S Moztarzadeh F Kargozar S Dodel M Tahriri M . Development of polyvinyl alcohol fibrous biodegradable scaffolds for nerve tissue engineering applications: in vitro study . Int. J. Polym. Mater. Polym. Biomater.64 ( 9 ), 474 – 480 ( 2015 ).
  • Ranjbar-Mohammadi M Kargozar S Bahrami SH Joghataei M . Fabrication of curcumin-loaded gum tragacanth/poly (vinyl alcohol) nanofibers with optimized electrospinning parameters . J. Ind. Textiles46 ( 5 ), 1170 – 1192 ( 2017 ).
  • Kargozar S Lotfibakhshaiesh N Ai J et al. Synthesis, physico-chemical and biological characterization of strontium and cobalt substituted bioactive glasses for bone tissue engineering . J. Non-Crystalline Solids449 , 133 – 140 ( 2016 ).
  • Amjadi I Rabiee M Hosseini M Mozafari M . Synthesis and characterization of doxorubicin-loaded poly (lactide-co-glycolide) nanoparticles as a sustained-release anticancer drug delivery system . Appl. Biochem. Biotechnol.168 ( 6 ), 1434 – 1447 ( 2012 ).
  • Mozafari M Moztarzadeh F . Synthesis, characterization and biocompatibility evaluation of sol–gel derived bioactive glass scaffolds prepared by freeze casting method . Ceramics Int.40 ( 4 ), 5349 – 5355 ( 2014 ).
  • Bretcanu O Baino F Verné E Vitale-Brovarone C . Novel resorbable glass-ceramic scaffolds for hard tissue engineering: from the parent phosphate glass to its bone-like macroporous derivatives . J. Biomater. Appl.28 ( 9 ), 1287 – 1303 ( 2014 ).
  • Mozafari M Mehraien M Vashaee D Tayebi L . Electroconductive nanocomposite scaffolds: a new strategy into tissue engineering and regenerative medicine . In:Nanocomposites-New Trends and Developments.FarzadEbrahimiInTech , Den Haag, The Netherlands ( 2012 ).
  • Nazari AG Tahari A Moztarzadeh F Mozafari M Bahrololoom M . Ion exchange behaviour of silver-doped apatite micro-and nanoparticles as antibacterial biomaterial . Micro & Nano Lett.6 ( 8 ), 713 – 717 ( 2011 ).
  • Baalousha M Le Coustumer P Jones I Lead J . Characterisation of structural and surface speciation of representative commercially available cerium oxide nanoparticles . Environ. Chem.7 ( 4 ), 377 – 385 ( 2010 ).
  • Pirmohamed T Dowding JM Singh S et al. Nanoceria exhibit redox state-dependent catalase mimetic activity . Chem. Commun.46 ( 16 ), 2736 – 2738 ( 2010 ).
  • Sahu T Singh Bisht S Ranjan Das K Kerkar S . Nanoceria: synthesis and biomedical applications . Curr. Nanosci.9 ( 5 ), 588 – 593 ( 2013 ).
  • Kyosseva SV Chen L Seal S McGinnis JF . Nanoceria inhibit expression of genes associated with inflammation and angiogenesis in the retina of Vldlr null mice . Exp. Eye Res.116 , 63 – 74 ( 2013 ).
  • Sardesai NP Andreescu D Andreescu S . Electroanalytical evaluation of antioxidant activity of cerium oxide nanoparticles by nanoparticle collisions at microelectrodes . J. Am. Chem. Soc.135 ( 45 ), 16770 – 16773 ( 2013 ).
  • Shah V Shah S Shah H et al. Antibacterial activity of polymer-coated cerium oxide nanoparticles . PLoS One7 ( 10 ), e47827 ( 2012 ).
  • Fahy N Farrell E Ritter T Ryan AE Murphy JM . Immune modulation to improve tissue engineering outcomes for cartilage repair in the osteoarthritic joint . Tissue Eng. Part B Rev.21 ( 1 ), 55 – 66 ( 2014 ).
  • Stegen S van Gastel N Carmeliet G . Bringing new life to damaged bone: the importance of angiogenesis in bone repair and regeneration . Bone70 , 19 – 27 ( 2015 ).
  • Zhang Q Ge K Ren H Zhang C Zhang J . Effects of cerium oxide nanoparticles on the proliferation, osteogenic differentiation and adipogenic differentiation of primary mouse bone marrow stromal cells in vitro . J. Nanosci. Nanotechnol.15 ( 9 ), 6444 – 6451 ( 2015 ).
  • Naseri-Nosar M Farzamfar S Sahrapeyma H et al. Cerium oxide nanoparticle-containing poly (∊-caprolactone)/gelatin electrospun film as a potential wound dressing material: In vitro and in vivo evaluation . Mater. Sci. Eng. C81 , 366 – 372 ( 2017 ).
  • Pagliari F Mandoli C Forte G et al. Cerium oxide nanoparticles protect cardiac progenitor cells from oxidative stress . ACS Nano6 ( 5 ), 3767 – 3775 ( 2012 ).
  • Arya A Gangwar A Singh SK et al. Cerium oxide nanoparticles promote neurogenesis and abrogate hypoxia-induced memory impairment through AMPK–PKC–CBP signaling cascade . Int. J. Nanomed.11 , 1159 ( 2016 ).
  • Karakoti A Monteiro-Riviere N Aggarwal R et al. Nanoceria as antioxidant: synthesis and biomedical applications . Jom60 ( 3 ), 33 – 37 ( 2008 ).
  • Rajeshkumar S Naik P . Synthesis and biomedical applications of cerium oxide nanoparticles – a review . Biotechnol. Rep.17 , 1 – 5 ( 2018 ).
  • He H . Preparation and dispersion of nanosize ceria in high electrolyte slurry by ball-milling . Integr. Ferroelectr.161 ( 1 ), 36 – 44 ( 2015 ).
  • Sahoo SK Mohapatra M Anand S . Characterization and optical properties of Eu-doped cubic nano ceria synthesized by using the co-precipitation-hydrothermal route . J. Korean Phys. Soc.62 ( 2 ), 297 – 304 ( 2013 ).
  • Saeid Kargozar Masoud Mozafari . Nanotechnology and Nanomedicine: Start small, think big . Materials Today: Proceedings5 ( 7 ), 15492 – 15500 ( 2018 ).
  • Derakhshandeh PG Soleimannejad J Janczak J . Sonochemical synthesis of a new nano-sized cerium (III) coordination polymer and its conversion to nanoceria . Ultrason. Sonochem.26 , 273 – 280 ( 2015 ).
  • Lee J-S Choi S-C . Crystallization behavior of nano-ceria powders by hydrothermal synthesis using a mixture of H 2 O 2 and NH 4 OH . Mater. Lett.58 ( 3 ), 390 – 393 ( 2004 ).
  • Samiee S Goharshadi EK . Effects of different precursors on size and optical properties of ceria nanoparticles prepared by microwave-assisted method . Mater. Res. Bull.47 ( 4 ), 1089 – 1095 ( 2012 ).
  • Zhang D Niu F Li H Shi L Fang J . Uniform ceria nanospheres: solvothermal synthesis, formation mechanism, size-control and catalytic activity . Powder Technol.207 ( 1 ), 35 – 41 ( 2011 ).
  • Lee SS Zhu H Contreras EQ Prakash A Puppala HL Colvin VL . High temperature decomposition of cerium precursors to form ceria nanocrystal libraries for biological applications . Chem. Mater.24 ( 3 ), 424 – 432 ( 2012 ).
  • Laberty-Robert C Long JW Lucas EM et al. Sol-gel-derived ceria nNanoarchitectures: synthesis, characterization, and electrical properties . Chem. Mater.18 ( 1 ), 50 – 58 ( 2006 ).
  • Shih CJ Chen YJ Hon MH . Synthesis and crystal kinetics of cerium oxide nanocrystallites prepared by co-precipitation process . Mater. Chem. Phys.121 ( 1 ), 99 – 102 ( 2010 ).
  • Charbgoo F Ahmad MB Darroudi M . Cerium oxide nanoparticles: green synthesis and biological applications . Int. J. Nanomed.12 , 1401 ( 2017 ).
  • Arumugam A Karthikeyan C Hameed ASH Gopinath K Gowri S Karthika V . Synthesis of cerium oxide nanoparticles using Gloriosa superba L. leaf extract and their structural, optical and antibacterial properties . Mater. Sci. Eng. C49 , 408 – 415 ( 2015 ).
  • Kannan S Sundrarajan M . A green approach for the synthesis of a cerium oxide nanoparticle: characterization and antibacterial activity . Int. J. Nanosci.13 ( 03 ), 1450018 ( 2014 ).
  • Kargar H Ghazavi H Darroudi M . Size-controlled and bio-directed synthesis of ceria nanopowders and their in vitro cytotoxicity effects . Ceram. Int.41 ( 3 ), 4123 – 4128 ( 2015 ).
  • Darroudi M Hoseini SJ Oskuee RK Hosseini HA Gholami L Gerayli S . Food-directed synthesis of cerium oxide nanoparticles and their neurotoxicity effects . Ceram. Int.40 ( 5 ), 7425 – 7430 ( 2014 ).
  • Kargar H Ghasemi F Darroudi M . Bioorganic polymer-based synthesis of cerium oxide nanoparticles and their cell viability assays . Ceram. Int.41 ( 1 ), 1589 – 1594 ( 2015 ).
  • Darroudi M Sarani M Oskuee RK Zak AK Hosseini HA Gholami L . Green synthesis and evaluation of metabolic activity of starch mediated nanoceria . Ceram. Int.40 ( 1 ), 2041 – 2045 ( 2014 ).
  • Darroudi M Sarani M Oskuee RK Zak AK Amiri MS . Nanoceria: gum mediated synthesis and in vitro viability assay . Ceram. Int.40 ( 2 ), 2863 – 2868 ( 2014 ).
  • Patil SN Paradeshi JS Chaudhari PB Mishra SJ Chaudhari BL . Bio-therapeutic potential and cytotoxicity assessment of pectin-mediated synthesized nanostructured cerium oxide . Appl. Biochem. Biotechnol.180 ( 4 ), 638 – 654 ( 2016 ).
  • Kumar A Das S Munusamy P et al. Behavior of nanoceria in biologically-relevant environments . Environ. Sci. Nano1 ( 6 ), 516 – 532 ( 2014 ).
  • Deshpande S Patil S Kuchibhatla SV Seal S . Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide . Appl. Phys. Lett.87 ( 13 ), 133113 ( 2005 ).
  • Sayle T Parker S Catlow C . The role of oxygen vacancies on ceria surfaces in the oxidation of carbon monoxide . Surface Sci.316 ( 3 ), 329 – 336 ( 1994 ).
  • Conesa J . Computer modeling of surfaces and defects on cerium dioxide . Surface Sci.339 ( 3 ), 337 – 352 ( 1995 ).
  • Reed K Cormack A Kulkarni A et al. Exploring the properties and applications of nanoceria: is there still plenty of room at the bottom? Environ. Sci. Nano 1 ( 5 ), 390 – 405 ( 2014 ).
  • Sakthivel T Das S Kumar A et al. Morphological phase diagram of biocatalytically active ceria nanostructures as a function of processing variables and their properties . ChemPlusChem78 ( 12 ), 1446 – 1455 ( 2013 ).
  • Lynch I Dawson KA . Protein-nanoparticle interactions . Nano Today3 ( 1 ), 40 – 47 ( 2008 ).
  • Grulke E Reed K Beck M Huang X Cormack A Seal S . Nanoceria: factors affecting its pro-and anti-oxidant properties . Environ. Sci. Nano1 ( 5 ), 429 – 444 ( 2014 ).
  • Chen S Hou Y Cheng G Zhang C Wang S Zhang J . Cerium oxide nanoparticles protect endothelial cells from apoptosis induced by oxidative stress . Biol. Trace Elem. Res.154 ( 1 ), 156 – 166 ( 2013 ).
  • Colon J Hsieh N Ferguson A et al. Cerium oxide nanoparticles protect gastrointestinal epithelium from radiation-induced damage by reduction of reactive oxygen species and upregulation of superoxide dismutase 2 . Nanomedicine6 ( 5 ), 698 – 705 ( 2010 ).
  • Nelson BC Johnson ME Walker ML Riley KR Sims CM . Antioxidant cerium oxide nanoparticles in biology and medicine . Antioxidants5 ( 2 ), 15 ( 2016 ).
  • Hirst SM Karakoti AS Tyler RD Sriranganathan N Seal S Reilly CM . Anti-inflammatory properties of cerium oxide nanoparticles . Small5 ( 24 ), 2848 – 2856 ( 2009 ).
  • Rubio L Annangi B Vila L Hernández A Marcos R . Antioxidant and anti-genotoxic properties of cerium oxide nanoparticles in a pulmonary-like cell system . Archi. Toxicol.90 ( 2 ), 269 – 278 ( 2016 ).
  • Ciofani G Genchi GG Mazzolai B Mattoli V . Transcriptional profile of genes involved in oxidative stress and antioxidant defense in PC12 cells following treatment with cerium oxide nanoparticles . Biochim. Biophys. Acta1840 ( 1 ), 495 – 506 ( 2014 ).
  • Celardo I Pedersen JZ Traversa E Ghibelli L . Pharmacological potential of cerium oxide nanoparticles . Nanoscale3 ( 4 ), 1411 – 1420 ( 2011 ).
  • Kong L Cai X Zhou X et al. Nanoceria extend photoreceptor cell lifespan in tubby mice by modulation of apoptosis/survival signaling pathways . Neurobiol. Dis.42 ( 3 ), 514 – 523 ( 2011 ).
  • Zolnik BS González-Fernández Á Sadrieh N Dobrovolskaia MA . Nanoparticles and the immune system . Endocrinology151 ( 2 ), 458 – 465 ( 2010 ).
  • Gojova A Guo B Kota RS Rutledge JC Kennedy IM Barakat AI . Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: effect of particle composition . Environ. Health Perspect.115 ( 3 ), 403 ( 2007 ).
  • Gojova A Lee J-T Jung HS Guo B Barakat AI Kennedy IM . Effect of cerium oxide nanoparticles on inflammation in vascular endothelial cells . Inhal. Toxicol.21 ( sup1 ), 123 – 130 ( 2009 ).
  • Ngobili TA Daniele MA . Nanoparticles and direct immunosuppression . Exp. Biol. Med.241 ( 10 ), 1064 – 1073 ( 2016 ).
  • Ilinskaya A Dobrovolskaia M . Immunosuppressive and anti-inflammatory properties of engineered nanomaterials . Br. J. Pharmacol.171 ( 17 ), 3988 – 4000 ( 2014 ).
  • Mittal M Siddiqui MR Tran K Reddy SP Malik AB . Reactive Oxygen Species in Inflammation and Tissue Injury . Antioxid. Redox Signal.20 ( 7 ), 1126 – 1167 ( 2014 ).
  • Wingard CJ Walters DM Cathey BL et al. Mast cells contribute to altered vascular reactivity and ischemia-reperfusion injury following cerium oxide nanoparticle instillation . Nanotoxicology5 ( 4 ), 531 – 545 ( 2011 ).
  • Krock BL Skuli N Simon MC . Hypoxia-induced angiogenesis: good and evil . Genes Cancer2 ( 12 ), 1117 – 1133 ( 2011 ).
  • Das S Singh S Dowding JM et al. The induction of angiogenesis by cerium oxide nanoparticles through the modulation of oxygen in intracellular environments . Biomaterials33 ( 31 ), 7746 – 7755 ( 2012 ).
  • Chigurupati S Mughal MR Okun E et al. Effects of cerium oxide nanoparticles on the growth of keratinocytes, fibroblasts and vascular endothelial cells in cutaneous wound healing . Biomaterials34 ( 9 ), 2194 – 2201 ( 2013 ).
  • Nethi SK Nanda HS Steele W Patra C . Functionalized nanoceria exhibit improved angiogenic properties . J. Mater. Chem. B5 ( 47 ), 9371 – 9383 ( 2017 ).
  • Das S Chigurupati S Dowding J et al. Therapeutic potential of nanoceria in regenerative medicine . MRS Bull.39 ( 11 ), 976 – 983 ( 2014 ).
  • Saghiri MA Orangi J Asatourian A Sorenson CM Sheibani N . Functional role of inorganic trace elements in angiogenesis part III:(Ti, Li, Ce, As, Hg, Va, Nb and Pb) . Crit. Rev. Oncol. Hematol.98 , 290 – 301 ( 2016 ).
  • Dowding JM Das S Kumar A et al. Cellular interaction and toxicity depend on physicochemical properties and surface modification of redox-active nanomaterials . ACS Nano7 ( 6 ), 4855 – 4868 ( 2013 ).
  • Lord MS Tsoi B Gunawan C Teoh WY Amal R Whitelock JM . Anti-angiogenic activity of heparin functionalised cerium oxide nanoparticles . Biomaterials34 ( 34 ), 8808 – 8818 ( 2013 ).
  • Masadeh MM Karasneh GA Al-Akhras MA et al. Cerium oxide and iron oxide nanoparticles abolish the antibacterial activity of ciprofloxacin against Gram-positive and gram negative biofilm bacteria . Cytotechnology67 ( 3 ), 427 – 435 ( 2015 ).
  • Hoecke KV Quik JT Mankiewicz-Boczek J et al. Fate and effects of CeO2 nanoparticles in aquatic ecotoxicity tests . Environmental science & technology43 ( 12 ), 4537 – 4546 ( 2009 ).
  • Thill A Zeyons O Spalla O et al. Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism . Environmental science & technology40 ( 19 ), 6151 – 6156 ( 2006 ).
  • Dar M Gul R Alfadda A et al. Size-dependent effect of nanoceria on their antibacterial activity towards Escherichia coli . Science of Advanced Materials9 ( 7 ), 1248 – 1253 ( 2017 ).
  • Farias IAP Santos CCLD Sampaio FC . Antimicrobial activity of cerium oxide nanoparticles on opportunistic microorganisms: a systematic review . Biomed. Res. Int.2018 , 14 ( 2018 ).
  • Li Y Zhang W Niu J Chen Y . Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles . ACS Nano6 ( 6 ), 5164 – 5173 ( 2012 ).
  • Magdalane CM Kaviyarasu K Vijaya JJ Siddhardha B Jeyaraj B . Photocatalytic activity of binary metal oxide nanocomposites of CeO 2/CdO nanospheres: investigation of optical and antimicrobial activity . J. Photochem. Photobiol. B Biol.163 , 77 – 86 ( 2016 ).
  • Krishnamoorthy K Veerapandian M Zhang L-H Yun K Kim SJ . Surface chemistry of cerium oxide nanocubes: Toxicity against pathogenic bacteria and their mechanistic study . J. Ind. Eng. Chem.20 ( 5 ), 3513 – 3517 ( 2014 ).
  • Kartsonakis IA Liatsi P Daniilidis I Kordas G . Synthesis, characterization, and antibacterial action of hollow ceria nanospheres with/without a conductive polymer coating . J. Am. Ceram. Soc.91 ( 2 ), 372 – 378 ( 2008 ).
  • Alpaslan E Geilich BM Yazici H Webster TJ . pH-controlled cerium oxide nanoparticle inhibition of both Gram-positive and Gram-negative bacteria growth . Sci. Rep.7 ( 2017 ).
  • Kuang Y He X Zhang Z et al. Comparison study on the antibacterial activity of nano-or bulk-cerium. oxide . J. Nanosci. Nanotechnol.11 ( 5 ), 4103 – 4108 ( 2011 ).
  • Karunakaran C Gomathisankar P Manikandan G . Preparation and characterization of antimicrobial Ce-doped ZnO nanoparticles for photocatalytic detoxification of cyanide . Mater. Chem. Phys.123 ( 2 ), 585 – 594 ( 2010 ).
  • Unnithan AR Sasikala ARK Sathishkumar Y Lee YS Park CH Kim CS . Nanoceria doped electrospun antibacterial composite mats for potential biomedical applications . Ceram. Int.40 ( 8 ), 12003 – 12012 ( 2014 ).
  • Sulthana S Banerjee T Kallu J et al. Combination therapy of NSCLC using Hsp90 inhibitor and doxorubicin carrying functional nanoceria . Mol. Pharm.14 ( 3 ), 875 – 884 ( 2017 ).
  • Kalashnikova I Mazar J Neal CJ et al. Nanoparticle delivery of Curcumin induces Cellular Hypoxia and ROS-mediated Apoptosis via modulation of Bcl-2/Bax in human Neuroblastoma . Nanoscale9 ( 29 ), 10375 – 10387 ( 2017 ).
  • Das J Han JW Choi Y-J et al. Cationic lipid-nanoceria hybrids, a novel nonviral vector-mediated gene delivery into mammalian cells: investigation of the cellular uptake mechanism . Sci. Rep.6 , 29197 ( 2016 ).
  • Falchi L Bogliolo L Galleri G et al. 266 Biocompatibility ofnanoceria in ram sperm during 24 hours of incubation . Reprod. Fertil. Dev.27 ( 1 ), 222 – 222 ( 2014 ).
  • Kang D-W Kim CK Jeong H-G et al. Biocompatible custom ceria nanoparticles against reactive oxygen species resolve acute inflammatory reaction after intracerebral hemorrhage . Nano Res.10 ( 8 ), 2743 – 2760 ( 2017 ).
  • Park B Donaldson K Duffin R et al. Hazard and risk assessment of a nanoparticulate cerium oxide-based diesel fuel additive—a case study . Inhal. Toxicol.20 ( 6 ), 547 – 566 ( 2008 ).
  • O’Brien N Cummins E . Ranking initial environmental and human health risk resulting from environmentally relevant nanomaterials . J. Environ. Sci. Health Part A45 ( 8 ), 992 – 1007 ( 2010 ).
  • De Marzi L Monaco A De Lapuente J et al. Cytotoxicity and genotoxicity of ceria nanoparticles on different cell lines in vitro . Int. J. Mol. Sci.14 ( 2 ), 3065 – 3077 ( 2013 ).
  • Gagnon J Fromm KM . Toxicity and protective effects of cerium oxide nanoparticles (nanoceria) depending on their preparation method, particle size, cell type, and exposure route . Europ. J. Inorg. Chem. 2015 ( 27 ), 4510 – 4517 ( 2015 ).
  • Kumari M Kumari SI Grover P . Genotoxicity analysis of cerium oxide micro and nanoparticles in Wistar rats after 28 days of repeated oral administration . Mutagenesis29 ( 6 ), 467 – 479 ( 2014 ).
  • Tseng MT Lu X Duan X et al. Alteration of hepatic structure and oxidative stress induced by intravenous nanoceria . Toxicol. Appli. Pharmacol.260 ( 2 ), 173 – 182 ( 2012 ).
  • Strobel C Förster M Hilger I . Biocompatibility of cerium dioxide and silicon dioxide nanoparticles with endothelial cells . Beilstein J. Nanotechnol.5 , 1795 ( 2014 ).
  • Karakoti AS Tsigkou O Yue S et al. Rare earth oxides as nanoadditives in 3-D nanocomposite scaffolds for bone regeneration . J. Mater. Chem.20 ( 40 ), 8912 – 8919 ( 2010 ).
  • Li K Shen Q Xie Y You M Huang L Zheng X . Incorporation of cerium oxide into hydroxyapatite coating regulates osteogenic activity of mesenchymal stem cell and macrophage polarization . J. Biomater. Appl.31 ( 7 ), 1062 – 1076 ( 2017 ).
  • Popov AL Popova NR Selezneva II Akkizov AY Ivanov VK . Cerium oxide nanoparticles stimulate proliferation of primary mouse embryonic fibroblasts in vitro . Mater. Sci. Eng. C68 , 406 – 413 ( 2016 ).
  • Mandoli C Pagliari F Pagliari S et al. Stem cell aligned growth induced by CeO2 nanoparticles in PLGA scaffolds with improved bioactivity for regenerative medicine . Adv. Funct. Mater.20 ( 10 ), 1617 – 1624 ( 2010 ).
  • Naganuma T Traversa E . The effect of cerium valence states at cerium oxide nanoparticle surfaces on cell proliferation . Biomaterials35 ( 15 ), 4441 – 4453 ( 2014 ).
  • Hu Y Du Y Jiang H Jiang G-S . Cerium promotes bone marrow stromal cells migration and osteogenic differentiation via Smad1/5/8 signaling pathway . Int. J. Clin. Exp. Pathol.7 ( 8 ), 5369 ( 2014 ).
  • Ball JP Mound BA Monsalve AG Nino JC Allen JB . Biocompatibility evaluation of porous ceria foams for orthopedic tissue engineering . J. Biomed. Mater. Res. Part A103 ( 1 ), 8 – 15 ( 2015 ).
  • Xiang J Li J He J et al. Cerium oxide nanoparticle modified scaffold interface enhances vascularization of bone grafts by activating calcium channel of mesenchymal stem cells . ACS Applied Materials & Interfaces8 ( 7 ), 4489 – 4499 ( 2016 ).
  • Baino F Vitale-Brovarone C . Feasibility of glass–ceramic coatings on alumina prosthetic implants by airbrush spraying method . Ceram. Int.41 ( 2 ), 2150 – 2159 ( 2015 ).
  • Chen Q Baino F Pugno NM Vitale-Brovarone C . Bonding strength of glass-ceramic trabecular-like coatings to ceramic substrates for prosthetic applications . Mater. Sci. Eng. C33 ( 3 ), 1530 – 1538 ( 2013 ).
  • Vitale-Brovarone C Baino F Tallia F Gervasio C Verné E . Bioactive glass-derived trabecular coating: a smart solution for enhancing osteointegration of prosthetic elements . Journal of Materials Science: Materials in Medicine23 ( 10 ), 2369 – 2380 ( 2012 ).
  • Li K Yu J Xie Y You M Huang L Zheng X . The effects of cerium oxide incorporation in calcium silicate coating on bone mesenchymal stem cell and macrophage responses . Biological Trace Element Research177 ( 1 ), 148 – 158 ( 2017 ).
  • Wu H Li F Wang S et al. Ceria nanocrystals decorated mesoporous silica nanoparticle based ROS-scavenging tissue adhesive for highly efficient regenerative wound healing . Biomaterials151 , 66 – 77 ( 2018 ).
  • Davan R Prasad R Jakka VS et al. Cerium oxide nanoparticles promotes wound healing activity in in-vivo animal model . J. Bionanoscience6 ( 2 ), 78 – 83 ( 2012 ).
  • Milan PB Lotfibakhshaiesh N Joghataie MT et al. Accelerated wound healing in a diabetic rat model using decellularized dermal matrix and human umbilical cord perivascular cells . Acta Biomaterialia45 ( Supplement C ), 234 – 246 ( 2016 ).
  • Davalli P Mitic T Caporali A Lauriola A D’Arca D . ROS, cell senescence, and novel molecular mechanisms in aging and age-Related Diseases . Oxidative Medicine and Cellular Longevity 2016 , 3565127 ( 2016 ).
  • Song H Cha MJ Song BW et al. Reactive oxygen species inhibit adhesion of mesenchymal stem cells implanted into ischemic myocardium via interference of focal adhesion complex . Stem Cells28 ( 3 ), 555 – 563 ( 2010 ).
  • Ilkun O Boudina S . Cardiac dysfunction and oxidative stress in the metabolic syndrome: an update on antioxidant therapies . Curr. Pharm. Des.19 ( 27 ), 4806 – 4817 ( 2013 ).
  • Kolli MB Manne ND Para R et al. Cerium oxide nanoparticles attenuate monocrotaline induced right ventricular hypertrophy following pulmonary arterial hypertension . Biomaterials35 ( 37 ), 9951 – 9962 ( 2014 ).
  • Orive G Anitua E Pedraz JL Emerich DF . Biomaterials for promoting brain protection, repair and regeneration . Nat. Rev. Neurosci.10 ( 9 ), 682 – 692 ( 2009 ).
  • Naz S Beach J Heckert B et al. Cerium oxide nanoparticles: a ‘radical’ approach to neurodegenerative disease treatment . Nanomedicine12 ( 5 ), 545 – 553 ( 2017 ).
  • D’Angelo B Santucci S Benedetti E et al. Cerium oxide nanoparticles trigger neuronal survival in a human Alzheimer disease model by modulating BDNF pathway . Current Nanoscience5 ( 2 ), 167 – 176 ( 2009 ).
  • Marino A Tonda-Turo C De Pasquale D et al. Gelatin/nanoceria nanocomposite fibers as antioxidant scaffolds for neuronal regeneration . Biochim. Biophys. Acta1861 ( 2 ), 386 – 395 ( 2017 ).
  • Kim JW Mahapatra C Hong JY et al. Functional recovery of contused spinal cord in rat with the injection of optimal-dosed cerium oxide nanoparticles . Adv. Sci.4 ( 10 ) ( 2017 ).
  • Deliormanlı AM . Electrospun cerium and gallium-containing silicate based 13–93 bioactive glass fibers for biomedical applications . Ceram. Int.42 ( 1 ), 897 – 906 ( 2016 ).
  • Priyadarshini B Anjaneyulu U Vijayalakshmi U . Preparation and characterization of sol-gel derived Ce4+ doped hydroxyapatite and its in vitro biological evaluations for orthopedic applications . Materials & Design119 ( Supplement C ), 446 – 455 ( 2017 ).
  • Niu J Azfer A Rogers LM Wang X Kolattukudy PE . Cardioprotective effects of cerium oxide nanoparticles in a transgenic murine model of cardiomyopathy . Cardiovasc. Res.73 ( 3 ), 549 – 559 ( 2007 ).
  • Wahba SM Darwish AS Kamal SM . Ceria-containing uncoated and coated hydroxyapatite-based galantamine nanocomposites for formidable treatment of Alzheimer’s disease in ovariectomized albino-rat model . Mater. Sci. Eng. C65 , 151 – 163 ( 2016 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.