236
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Transfection of Pulmonary Cells by Stable pDNA-Polycationic Hybrid Nanostructured Particles

, , , , , , & show all
Pages 407-429 | Received 01 Aug 2018, Accepted 04 Dec 2018, Published online: 30 Jan 2019

References

  • Garnett MC . Gene-delivery systems using cationic polymers. Crit. Rev. Ther. Drug.16 (2), 1–61 (1999).
  • del Pozo-Rodríguez A , DelgadoD, SolinísMÁet al. Solid lipid nanoparticles as potential tools for gene therapy: in vivo protein expression after intravenous administration. Int. J. Pharm.385 (1), 157–162 (2010).
  • Merkel OM , ZhengM, DebusHet al. Pulmonary gene delivery using polymeric nonviral vectors. Bioconjugate Chem.23 (1), 3–20 (2012).
  • Liu F , ShollenbergerLM, ConwellCCet al. Mechanism of naked DNA clearance after intravenous injection. J. Gene Med.9 (7), 613–619 (2007).
  • Azarmi S , RoaWH, LöbenbergR. Targeted delivery of nanoparticles for the treatment of lung diseases. Adv. Drug Deliv. Rev.60 (8), 863–875 (2008).
  • Woodle MC , LuPY. Nanoparticles deliver RNAi therapy. Mater. Today8 (8), 34–41 (2005).
  • Choi YH , LiuF, ParkJSet al. Lactose-poly (ethylene glycol)-grafted poly-L-lysine as hepatoma cell-targeted gene carrier. Bioconjugate Chem.9 (6), 708–718 (1998).
  • Boussif O , Lezoualc’hF, ZantaMAet al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl Acad. Sci. USA.92 (16), 7297–7301 (1995).
  • Huang Y , DingX, QiYet al. Reduction-responsive multifunctional hyperbranched polyaminoglycosides with excellent antibacterial activity, biocompatibility and gene transfection capability. Biomaterials106 (1), 134–143 (2016).
  • Huang Y , HuH, LiR-Qet al. Versatile types of MRI-visible cationic nanoparticles involving pullulan polysaccharides for multifunctional gene carriers. ACS Appl. Mater. Inter.8 (6), 3919–3927 (2016).
  • Mao H-Q , RoyK, Troung-LeVLet al. Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. J. Control. Rel.70 (3), 399–421 (2001).
  • Müller RH , MäderK, GohlaS. Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. Eur. J. Pharm. Biopharm.50 (1), 161–177 (2000).
  • del Pozo-Rodriguez A , DelgadoD, SolinísMAet al. Solid lipid nanoparticles for retinal gene therapy: transfection and intracellular trafficking in RPE cells. Int. J. Pharm.360 (1), 177–183 (2008).
  • Gaspar DP , FariaV, GonçalvesLMDet al. Rifabutin-loaded solid lipid nanoparticles for inhaled antitubercular therapy: physicochemical and in vitro studies. Int. J. Pharm.497 (1-2), 199–209 (2016).
  • Heiati H , TawashiR, PhillipsNC. Drug retention and stability of solid lipid nanoparticles containing azidothymidine palmitate after autoclaving, storage and lyophilization. J. Microencapsul.15 (2), 173–184 (1998).
  • zur Mühlen A , SchwarzC, MehnertW. Solid lipid nanoparticles (SLN) for controlled drug delivery-drug release and release mechanism. Eur. J. Pharm. Biopharm.45 (2), 149–155 (1998).
  • Videira M , AlmeidaAJ, FabraÀ. Preclinical evaluation of a pulmonary delivered paclitaxel-loaded lipid nanocarrier antitumor effect. Nanomed.: Nanotechnol.8 (7), 1208–1215 (2012).
  • Gaspar DP , SerraC, LinoPRet al. Microencapsulated SLN: an innovative strategy for pulmonary protein delivery. Int. J. Pharm.516 (1-2), 231–246 (2017).
  • Müller RH , RühlD, RungeSet al. Cytotoxicity of solid lipid nanoparticles as a function of the lipid matrix and the surfactant. Pharm. Res.14 (4), 458–462 (1997).
  • Yang SC , LuLF, CaiYet al. Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain. J. Control. Rel.59 (3), 299–307 (1999).
  • Zara GP , CavalliR, FundaròAet al. Pharmacokinetics of doxorubicin incorporated in solid lipid nanospheres (SLN). Pharmacol. Res.40 (3), 281–286 (1999).
  • Roy K , MaoH-Q, HuangS-Ket al. Oral gene delivery with chitosan-DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat. Med.5 (4), 387–391 (1999).
  • Khatri K , GoyalAK, GuptaPNet al. Plasmid DNA loaded chitosan nanoparticles for nasal mucosal immunization against hepatitis B. Int. J. Pharm.354 (1), 235–241 (2008).
  • Cadete A , FigueiredoL, LopesRet al. Development and characterization of a new plasmid delivery system based on chitosan - sodium deoxycholate nanoparticles. Eur. J. Pharm. Sci.45 (4), 451–458 (2012).
  • Guliyeva Ü , ÖnerF, ÖzsoyŞet al. Chitosan microparticles containing plasmid DNA as potential oral gene delivery system. Eur. J. Pharm. Biopharm.62 (1), 17–25 (2006).
  • Mansouri S , CuieY, WinnikFet al. Characterization of folate-chitosan-DNA nanoparticles for gene therapy. Biomaterials27 (9), 2060–2065 (2006).
  • Mansouri S , LavigneP, CorsiKet al. Chitosan–DNA nanoparticles as non-viral vectors in gene therapy: strategies to improve transfection efficacy. Eur. J. Pharm. Biopharm.57 (1), 1–8 (2004).
  • Zhang G , GurtuV, KainSR. An enhanced green fluorescent protein allows sensitive detection of gene transfer in mammalian cells. Biochem. Bioph. Res. Co.227 (3), 707–711 (1996).
  • Berg JC . An Introduction to Interfaces and Colloids – The Bridge to Nanoscioence.World Scientific Publishing Co., Singapore (2015).
  • Gonçalves LMD , CadeteA, FigueiredoLet al. ( Eds). Biodegradable nanoparticles of alginate and chitosan as non-viral DNA oral delivery system. 1st Portuguese Meeting in Bioengineering (ENBENG). IEEE, Oeiras, Portugal (2011).
  • Inouye S , TsujiFI. Aequorea green fluorescent protein. FEBS Lett.341 (2–3), 277–280 (1994).
  • Zhao X , YuS-B, WuF-Let al. Transfection of primary chondrocytes using chitosan-pEGFP nanoparticles. J. Control. Rel.112 (2), 223–228 (2006).
  • Gaspar DP , GasparMM, EleuteérioCVet al. Microencapsulated solid lipid nanoparticles as a hybrid platform for pulmonary antibiotic delivery. Mol. Pharmaceut.14 (9), 2977–2990 (2017).
  • Csaba N , Köping-HöggårdM, AlonsoMJ. Ionically crosslinked chitosan/tripolyphosphate nanoparticles for oligonucleotide and plasmid DNA delivery. Int. J. Pharm.382 (1), 205–214 (2009).
  • Grenha A , SeijoB, Remuñán-LópezC. Microencapsulated chitosan nanoparticles for lung protein delivery. Eur. J. Pharm. Sci.25 (4), 427–437 (2005).
  • Al-Qadi S , GrenhaA, Remuñán-LópezC. Microspheres loaded with polysaccharide nanoparticles for pulmonary delivery: preparation, structure and surface analysis. Carbohyd. Polym.86 (1), 25–34 (2011).
  • Rodrigues S , DionísioM, Remuñán-LópezCet al. Biocompatibility of chitosan carriers with application in drug delivery. J. Funct. Biomater.3 (3), 615–641 (2012).
  • Fotakis G , TimbrellJA. In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol. Lett.160 (2), 171–177 (2006).
  • Shi L , GüntherS, HübschmannTet al. Limits of propidium iodide as a cell viability indicator for environmental bacteria. Cytom. Part A.71 (8), 592–598 (2007).
  • Grenha A , SeijoB, SerraCet al. Chitosan nanoparticle-loaded mannitol microspheres: structure and surface characterization. Biomacromolecules8 (7), 2072–2079 (2007).
  • Tewa-Tagne P , BriançonS, FessiH. Preparation of redispersible dry nanocapsules by means of spray-drying: development and characterisation. Eur. J. Pharm. Sci.30 (2), 124–135 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.