233
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Solid Lipid Nanoparticles for Ocular Delivery of Isoniazid: Evaluation, Proof of Concept and In Vivo Safety & Kinetics

, , , &
Pages 465-491 | Received 06 Aug 2018, Accepted 16 Nov 2018, Published online: 29 Jan 2019

Reference

  • WHO . Global tuberculosis report. World Health Organization1–249 (2017).
  • Dalvin LA , SmithWM. Intraocular manifestations of mycobacterium tuberculosis: a review of the literature. J. Clin. Tuberc. Other Mycobact. Dis.7, 13–21 (2017).
  • Sanches I , CarvalhoA, DuarteR. Who are the patients with extrapulmonary tuberculosis?Rev. Port. Pneumol.21, 90–93 (2014).
  • Yeh S , SenHN, ColyerM, ZaporM, WroblewskiK. Update on ocular tuberculosis. Curr. Opin. Ophthalmol.23, 551–556 (2012).
  • Shakarchi FI . Ocular tuberculosis: current perspectives. Clin. Ophthalmol.9, 2223–2227 (2015).
  • Gupta V , GuptaA, RaoNA. Intraocular tuberculosis – an update. Surv. Ophthalmol.52, 561–587 (2007).
  • Lopez ES , EspinaM, DoktorovovaS, SoutoEB, GarcíaML. Lipid nanoparticles (SLN, NLC): overcoming the anatomical and physiological barriers of the eye – Part I – Barriers and determining factors in ocular delivery. Eur. J. Pharm. Biopharm.110, 70–75 (2017).
  • WHO . Treatment of tuberculosis. World Health Organization51, 1–160 (2003).
  • Metushi IG , CaiP, ZhuX, NakagawaT, UetrechtJP. A fresh look at the mechanism of isoniazid-induced hepatotoxicity. Clin. Pharmacol. Ther.89, 911–914 (2011).
  • Bucolo C , DragoF, SalomoneS. Ocular drug delivery: a clue from nanotechnology. Front. Pharmacol.3, 1–3 (2012).
  • Bhandari R , KaurIP. Pharmacokinetics, tissue distribution and relative bioavailability of isoniazid-solid lipid nanoparticles. Int. J. Pharm.44, 202–212 (2013).
  • Bhandari R , KaurIP. A method to prepare solid lipid nanoparticles with improved entrapment efficiency of hydrophilic drugs. Curr. Nanosci.9, 211–220 (2013).
  • Kaur IP , BhandhariR. Solid lipid nanoparticles entrapping hydrophilic/amphiphilic drug and a process for preparing the same WO 2013105101 A1 (2013).
  • Aggarwal D , GargA, KaurIP. Development of a topical niosomal preparation of acetazolamide: preparation and evaluation. J. Pharm. Pharmacol.56, 1509–1517 (2004).
  • Kakkar S , KaruppayilSM, RautJSet al. Lipid-polyethylene glycol based nano-ocular formulation of ketoconazole. Int. J. Pharm.495, 276–289 (2015).
  • Rheinwald JG , HahnWC, RamseyMRet al. A two-stage, p16(INK4A)- and p53-dependent keratinocyte senescence mechanism that limits replicative potential independent of telomere status. Mol. Cell Biol.22, 5157–5172 (2002).
  • Gipson IK , MichaudSS, ArguesoP, TisdaleA, NgTF, RussoCL. Mucin gene expression in immortalized human corneal-limbal and conjunctival epithelial cell lines. Invest. Ophthalmol. Vis. Sci.44, 2496–2506 (2003).
  • McDermott AM , BaidouriH, WoodwardAMet al. Short Tandem Repeat (STR) profiles of commonly used human ocular surface cell lines. Curr. Eye Res.43, 1097–1101 (2018).
  • Hassan A , FattouhM, AtteyaI, MohammadeenH, AhmedH. Validation of a rapid tuberculosis PCR assay for detection of MDR-TB patients in sohag University Hospital. Appl. Environ. Microbiol.2, 65–69 (2014).
  • Gupta R , ThakurB, SinghPet al. Anti-tuberculosis activity of selected medicinal plants against multi-drug resistant Mycobacterium tuberculosis isolates. Indian J. Med. Res.13, 809–813 (2010).
  • Liu Y , LiuJ, ZhangX, ZhangR, HuangY, WuC. In situ gelling gelrite/alginate formulations as vehicles for ophthalmic drug delivery. AAPS PharmSciTech.11, 610–620 (2010).
  • Damari SP , ShamrakovD, VarenikMet al. Practical aspects in size and morphology characterization of drug-loaded nano-liposomes. Int. J. Pharm.547, 648–655 (2018).
  • Sinclair GW , PeppasNA. Analysis of non-Fickian transport in polymers using simplified exponential expressions. J. Memb. Sci.17, 329–331 (1984).
  • Bazzaz BSF , KhamenehB, NamaziN, IranshahiM, DavoodiD, GolmohammadzadehS. Solid lipid nanoparticles carrying Eugenia caryophyllata essential oil: the novel nanoparticulate systems with broad-spectrum antimicrobial activity. Lett. Appl. Microbiol.66, 506–513 (2018).
  • Gupta D , SinghA, KhanAU. Nanoparticles as efflux pump and biofilm inhibitor to rejuvenate bactericidal effect of conventional antibiotics. Nanoscale Res. Lett.454, 1–6 (2017).
  • Kaur IP , KakkarS. Nanotherapy for posterior eye diseases. J. Control. Rel.193, 100–112 (2014).
  • Bramante CT , TalbotEA, RathinamSR, StevensR, ZegansME. Diagnosis of ocular tuberculosis: a role for new testing modalities?Int. Ophthalmol. Clin.47, 45–62 (2007).
  • Unissa AN , SubbianS, HannaLE, SelvakumarN. Overview on mechanisms of isoniazid action and resistance in Mycobacterium tuberculosis. Infect. Genet. Evol.45, 474–492 (2016).
  • Alany RG , RadesT, NicollJ, TuckerIG, DaviesNM. W/O microemulsions for ocular delivery: evaluation of ocular irritation and precorneal retention. J. Control. Rel.111, 145–152 (2006).
  • Urtti A . Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv. Drug Deliv. Rev.58, 1131–1135 (2006).
  • Trabado JA , DieboldY, SanchezA. Designing lipid nanoparticles for topical ocular drug delivery. Int. J. Pharm.532, 204–217 (2017).
  • Yoncheva K , LizarragaE, IracheJM. Pegylated nanoparticles based on poly(methyl vinyl ether-co-maleic anhydride): preparation and evaluation of their bioadhesive properties. Eur. J. Pharm. Sci.24, 411–419 (2005).
  • Amrite AC , KompellaUB. Size-dependent disposition of nanoparticles and microparticles following subconjunctival administration. J. Pharm. Pharmacol.57, 1555–1563 (2005).
  • Hironaka K , InokuchiY, TozukaY, ShimazawaM, HaraH, TakeuchiH. Design and evaluation of a liposomal delivery system targeting the posterior segment of the eye. J. Control. Rel.136, 247–253 (2009).
  • Shen Y , TuJ. Preparation and ocular pharmacokinetics of ganciclovir liposomes. AAPS J.9, 1–7 (2007).
  • Nagarwal RC , KantS, SinghPN, MaitiP, PanditJK. Polymeric nanoparticulate system: a potential approach for ocular drug delivery. J. Control. Rel.136, 2–13 (2009).
  • Weng Y , LiuJ, JinS, GuoW, LiangX, HuZ. Nanotechnology-based strategies for treatment of ocular disease. Acta Pharm. Sin. B.7, 281–291 (2017).
  • Shah RM , EldridgeDS, PalomboEA, HardingIH. Microwave-assisted formulation of solid lipid nanoparticles loaded with non-steroidal anti-inflammatory drugs. Int. J. Pharm.515, 543–554 (2016).
  • Missana T , AdellA. On the applicability of DLVO theory to the prediction of clay colloids stability. J. Colloid Interface. Sci.230, 150–156 (2000).
  • Singh H , BhandariR, KaurIP. Encapsulation of rifampicin in a solid lipid nanoparticulate system to limit its degradation and interaction with isoniazid at acidic pH. Int. J. Pharm.446, 106–111 (2013).
  • Choi KO , AdityaNP, KoS. Effect of aqueous pH and electrolyte concentration on structure, stability and flow behavior of non-ionic surfactant based solid lipid nanoparticles. Food Chem.147, 239–244 (2014).
  • Cui Z , ShiKZ, CuiYZ, BinksBP. Double phase inversion of emulsions stabilized by a mixture of CaCO3 nanoparticles and sodium dodecyl sulphate. Colloids Surf. A Physicochem. Eng. Asp.329, 67–74 (2008).
  • Freitas C , MüllerRH. Stability determination of solid lipid nanoparticles (SLN) in aqueous dispersion after addition of electrolyte. J. Microencapsul.16, 59–71 (1999).
  • Dubes A , LopezHP, AbdelwahedWet al. Scanning electron microscopy and atomic force microscopy imaging of solid lipid nanoparticles derived from amphiphilic cyclodextrins. Eur. J. Pharm. Biopharm.55, 279–282 (2003).
  • Li Y , KrogerM, LiuWK. Shape effect in cellular uptake of PEGylated nanoparticles: comparison between sphere, rod, cube and disk. Nanoscale7, 16631–16646 (2015).
  • Bunjes H , SteinigerF, RichterW. Visualizing the structure of triglyceride nanoparticles in different crystal modifications. Langmuir23, 4005–4011 (2007).
  • Brubach JB , JanninV, MahlerBet al. Structural and thermal characterization of glyceryl behenate by x-ray diffraction coupled to differential calorimetry and infrared spectroscopy. Int. J. Pharm.336, 248–256 (2007).
  • Lewis RNAH , McElhaneyRN. Membrane lipid phase transitions and phase organization studied by Fourier transform infrared spectroscopy. Biochim. Biophys. Acta.1828, 2347–2358 (2013).
  • Bunjes H , UnruhT. Characterization of lipid nanoparticles by differential scanning calorimetry, x-ray and neutron scattering. Adv. Drug Deliv. Rev.59, 379–402 (2007).
  • Unruh T , BunjesH, WestesenK, KochMHJ. Investigations on the melting behaviour of triglyceride nanoparticles. Colloid. Polym. Sci.279, 398–403 (2001).
  • Bunjes H , KochMHJ, WestesenK. Effect of particle size on colloidal solid triglycerides. Langmuir16, 5234–5241 (2000).
  • Hunter RJ . Foundations of Colloid Science. Clarendon Press, Oxford, 267–269 (1993).
  • Westesen K , BunjesH, KochMHJ. Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential. J. Control. Rel.48, 223–236 (1997).
  • Ali H , El-SayedK, SylvesterPW, NazzalS. Molecular interaction and localization of tocotrienol-rich fraction (TRF) within the matrices of lipid nanoparticles: evidence studies by differential scanning calorimetry (DSC) and proton nuclear magnetic resonance spectroscopy (1H NMR). Colloids Surf. B Biointerfaces77, 286–297 (2010).
  • Schubert MA , HarmsM, Müller-GoymannCC. Structural investigations on lipid nanoparticles containing high amounts of lecithin. Eur. J. Pharm. Sci.27, 226–236 (2006).
  • Helgason T , AwadTS, KristbergssonK, McClementsDJ, WeissJ. Effect of surfactant surface coverage on formation of solid lipid nanoparticles (SLN). J. Colloid Interface Sci.334, 75–81 (2009).
  • Kumar M , KakkarV, MishraAK, ChuttaniK, KaurIP. Intranasal delivery of streptomycin sulfate (STRS) loaded solid lipid nanoparticles to brain and blood. Int. J. Pharm.461, 223–233 (2014).
  • Kumari A , YadavSK, YadavSC. Biodegradable polymeric nanoparticles-based drug delivery systems. Colloids Surf. B Biointerfaces75, 1–18 (2010).
  • Maderuelo C , ZarzueloA, LanaoJM. Critical factors in the release of drugs from sustained release hydrophilic matrices. J. Control. Rel.154, 2–19 (2011).
  • Shokry M , HathoutRM, MansourS. Exploring gelatin nanoparticles as novel nanocarriers for Timolol Maleate: augmented in-vivo efficacy and safe histological profile. Int. J. Pharm.545, 229–239 (2018).
  • Malhotra M , MajumdarDK. Permeation through cornea. Indian J. Exp. Biol.39, 11–24 (2001).
  • Sieg JW , RobinsonJR. Mechanistic studies on transcorneal permeation of pilocarpine. J. Pharm. Sci.65, 1816–1822 (1976).
  • Kreuter J . Nanoparticulate systems for brain delivery of drugs. Adv. Drug Deliv. Rev.47, 65–81 (2001).
  • Wasan KM . Formulation and physiological and biopharmaceutical issues in the development of oral based lipid-based drug delivery systems. Drug Dev. Ind. Pharm.27, 267–276 (2001).
  • Dumas F , HaanappelE. Lipids in infectious diseases - the case of AIDS and tuberculosis. Biochim. Biophys. Acta.1859, 1636–1647 (2017).
  • Pandey AK , SassettiCM. Mycobacterial persistence requires the utilization of host cholesterol. Proc. Natl Acad. Sci. USA105, 4376–4380 (2008).
  • Kaur IP , SinghH. Nanostructured drug delivery for better management of tuberculosis. J. Control. Rel.184, 36–50 (2014).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.