387
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Charge-conversion and ultrasound-responsive O-carboxymethyl Chitosan Nanodroplets for Controlled Drug Delivery

ORCID Icon, , , , , & show all
Pages 2549-2565 | Received 28 May 2019, Accepted 21 Jun 2019, Published online: 04 Jul 2019

References

  • Kanamala M , WilsonWR , YangM , PalmerBD , WuZ. Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: a review. Biomaterials85, 152–167 (2016).
  • Chen EM , QuijanoAR , SeoY-Eet al. Biodegradable PEG-poly(ω-pentadecalactone-co-p-dioxanone) nanoparticles for enhanced and sustained drug delivery to treat brain tumors. Biomaterials178, 193–203 (2018).
  • Muthu MS , FengS-S. Theranostic liposomes for cancer diagnosis and treatment: current development and pre-clinical success. Expert Opin. Drug Deliv.10(2), 151–155 (2012).
  • Duan S , GuoL , ShiD , ShangM , MengD , LiJ. Development of a novel folate-modified nanobubbles with improved targeting ability to tumor cells. Ultrason Sonochem37, 235–243 (2017).
  • Luesakul U , KomenekS , PuthongS , MuangsinN. Shape-controlled synthesis of cubic-like selenium nanoparticles via the self-assembly method. Carbohydr. Polym.153, 435–444 (2016).
  • Ji J , WuD , LiuL , ChenJ , XuY. Preparation, characterization, and in vitro release of folic acid-conjugated chitosan nanoparticles loaded with methotrexate for targeted delivery. Polym. Bull.68, 1707–1720 (2012).
  • Sinha VR , SinglaAK , WadhawanSet al. Chitosan microspheres as a potential carrier for drugs. Int. J. Pharm.274(1), 1–33 (2004).
  • Zhou X , GuoL , ShiD , DuanS , LiJ. Biocompatible chitosan nanobubbles for ultrasound-mediated targeted delivery of doxorubicin. Nanoscale Res. Lett.14(1), 24 (2019).
  • Fathi M , ZangabadPS , AghanejadA , BararJ , Erfan-NiyaH , OmidiY. Folate-conjugated thermosensitive O-maleoyl modified chitosan micellar nanoparticles for targeted delivery of erlotinib. Carbohydr. Polym.172, 130–141 (2017).
  • Kumar MNVR , MuzzarelliRAA , MuzzarelliC , SashiwaH , DombAJ. Chitosan chemistry and pharmaceutical perspectives. Chem. Rev.104(12), 6017–6084 (2004).
  • Zhou Y , YangB , RenXet al. Hyperbranched cationic amylopectin derivatives for gene delivery. Biomaterial33(18), 4731–4740 (2012).
  • Tseng WC , JongCM. Improved stability of polycationic vector by dextran-grafted branched polyethylenimine. Biomacromolecules4(5), 1277–1284 (2003).
  • Oupicky D , OgrisM , HowardKA , DashPR , UlbrichK , SeymourLW. Importance of lateral and steric stabilization of polyelectrolyte gene delivery vectors for extended systemic circulation. Mol. Ther.5(4), 463–472 (2002).
  • Kusuma HS , Al-Sa’baniAF , DarmokoesoemoH. N,O-Carboxymethyl chitosan: an innovation in new natural preservative from shrimp shell waste with a nutritional value and health orientation. Procedia Food Sci.3, 35–51 (2015).
  • Li X , KongX , ZhangZet al. Cytotoxicity and biocompatibility evaluation of N,O-carboxymethyl chitosan/oxidized alginate hydrogel for drug delivery application. Int. J. Biol. Macromol.50(5), 1299–1305 (2012).
  • Zhu K , YeT , LiuJet al. Nanogels fabricated by lysozyme and sodium carboxymethyl cellulose for 5-fluorouracil controlled release. Int. J. Pharm.441(1–2), 721–727 (2013).
  • Liu D , WangT , LiuX , TongZ. Cell proliferation and cell sheet detachment from the positively and negatively charged nanocomposite hydrogels. Biopolymers101(1), 58–65 (2014).
  • Bhattarai N , GunnJ , ZhangM. Chitosan-based hydrogels for controlled, localized drug delivery. Adv. Drug Deliv. Rev.62(1), 83–99 (2010).
  • Wang M , HuH , SunYet al. A pH-sensitive gene delivery system based on folic acid-PEG-chitosan – PAMAM–plasmid DNA complexes for cancer cell targeting. Biomaterials34(38), 10120–10132 (2013).
  • Kalliola S , RepoE , SrivastavaVet al. The pH sensitive properties of carboxymethyl chitosan nanoparticles cross-linked with calcium ions. Colloids Surf. B Biointerfaces153, 229–236 (2017).
  • Gujarathi NA , RaneBR , PatelJK. pH sensitive polyelectrolyte complex of O-carboxymethyl chitosan and poly (acrylic acid) cross-linked with calcium for sustained delivery of acid susceptible drugs. Int. J. Pharm.436(1–2), 418–425 (2012).
  • Li Y , YangJ , XuB , GaoF , WangW , LiuW. Enhanced therapeutic siRNA to tumor cells by a pH-Sensitive agmatine-chitosan bioconjugate. ACS Appl. Mater. Interfaces7(15), 8114–8124 (2015).
  • Baghbani F , ChegeniM , MoztarzadehF , Hadian-GhazviniS , RazM. Novel ultrasound-responsive chitosan/perfluorohexane nanodroplets for image-guided smart delivery of an anticancer agent: curcumin. Mater. Sci. Eng. C74, 186–193 (2017).
  • Mitragotri S . Healing sound: the use of ultrasound in drug delivery and other therapeutic applications. Nat. Rev. Drug Discov.4(3), 255–260 (2005).
  • Matsunaga TO , SheeranPS , LuoisSet al. Phase-change nanoparticles using highly volatile perfluorocarbons: toward a platform for extravascular ultrasound imaging. Theranostics2(12), 1185–1198 (2012).
  • Kripfgans OD , FowlkesJB , MillerDL , EldevikOP , CarsonPL. Acoustic droplet vaporization for therapeutic and diagnostic applications. Ultrasound Med. Biol.26(7), 1177–1189 (2000).
  • Sheeran PS , DaytonPA. Phase-change contrast agents for imaging and therapy. Curr. Pharm. Des.18(15), 2152–2165 (2012).
  • Baghbani F , MoztarzadehF , MohandesiJA , YazdianF , Mokhtari-DizajiM , HamediS. Formulation design, preparation and characterization of multifunctional alginate stabilized nanodroplets. Int. J. Biol. Macromol.89, 550–558 (2016).
  • Patil S , SandbergA , HeckertE , SelfW , SealS. Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials28(31), 4600–4607 (2007).
  • Matthaiou EI , BararJ , SandaltzopoulosR , LiC , CoukosG , OmidiY. Shikonin-loaded antibody-armed nanoparticles for targeted therapy of ovarian cancer. Int. J. Nanomed.9, 1855–1870 (2014).
  • Singh R , LillardJWJr. Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol.86(3), 215–223 (2009).
  • Fathi M , SahandiP , MajidiS , BararJ , Erfan-NiyaH , OmidiY. Stimuli-responsive chitosan-based nanocarriers for cancer therapy. Bioimpacts7, 269–277 (2017).
  • Hu X , WangY , PengB. Chitosan-capped mesoporous silica nanoparticles as pH-responsive nanocarriers for controlled drug release. Chem. Asian J.9(1), 319–327 (2014).
  • Maruyama K , IwasakiF , TakizawaTet al. Novel receptor-mediated gene delivery system comprising plasmid/protamine/sugar-containing polyanion ternary complex. Biomaterials25(16), 3267–3273 (2004).
  • Oupicky D , KonakC , DashPR , SeymourLW , UlbrichK. Effect of albumin and polyanion on the structure of DNA complexes with polycation containing hydrophilic nonionic block. Bioconjug. Chem.10(5), 764–772 (1999).
  • Li SD , HuangL. Pharmacokinetics and biodistribution of nanoparticles. Mol. Pharm.5(4), 496–504 (2008).
  • Zhang X , BaiR , TongYW. Selective adsorption behaviors of proteins on polypyrrole-based adsorbents. Sep. Purif. Technol.52, 161–169 (2006).
  • Robertson BC , ZydneyAL. Protein adsorption in asymmetric ultrafiltration membranes with highly constricted pores. J. Colloid Interface Sci.134(2), 563–575 (1990).
  • Lorenz MR , HolzapfelV , MusyanovychAet al. Uptake of functionalized, fluorescent-labeled polymeric particles in different cell lines and stem cells. Biomaterials27(14), 2820–2828 (2006).
  • Mansouri S , CuieY , WinnikFet al. Characterization of folate–chitosan–DNA nanoparticles for gene therapy. Biomaterials27(9), 2060–2065 (2006).
  • Park JH , SaravanakumarG , KimK , KwonIC. Targeted delivery of low molecular drugs using chitosan and its derivatives. Adv. Drug Deliv. Rev.62(1), 28–41 (2010).
  • Bandara S , CarnegieC-A , JohnsonCet al. Synthesis and characterization of zinc/chitosan–folic acid complex. Heliyon4(8), e00737–e00737 (2018).
  • Ernsting MJ , MurakamiM , RoyA , LiSD. Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. J. Control. Rel.172(3), 782–794 (2013).
  • Wang CH , KangST , LeeYH , LuoYL , HuangYF , YehCK. Aptamer-conjugated and drug-loaded acoustic droplets for ultrasound theranosis. Biomaterials33(6), 1939–1947 (2012).
  • Luesakul U , PuthongS , NeamatiN , MuangsinN. pH-responsive selenium nanoparticles stabilized by folate-chitosan delivering doxorubicin for overcoming drug-resistant cancer cells. Carbohydr. Polym.181, 841–850 (2018).
  • Guo H , ZhangD , LiCet al. Self-assembled nanoparticles based on galactosylated O-carboxymethyl chitosan-graft-stearic acid conjugates for delivery of doxorubicin. Int. J. Pharm.458(1), 31–38 (2013).
  • Rapoport N . Phase-shift, stimuli-responsive perfluorocarbon nanodroplets for drug delivery to cancer. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.4(5), 492–510 (2012).
  • Omidi Y , BararJ. Targeting tumor microenvironment: crossing tumor interstitial fluid by multifunctional nanomedicines. Bioimpacts4(2), 55–67 (2014).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.