131
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A Surface-Enhanced Raman Scattering-Based Probe Method for Detecting Chromogranin A in Adrenal Tumors

, ORCID Icon, , , , , & show all
Pages 397-407 | Received 02 Dec 2019, Accepted 08 Jan 2020, Published online: 27 Jan 2020

References

  • Lefebvre M , FoulkesWD. PHEO and paraganglioma syndromes: genetics and management update. Curr. Oncol.21(1), E8–E17 (2014).
  • Lenders JWM , DuhQ-Y, EisenhoferGet al. Pheochromocytoma and paraganglioma: an Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metabolism99(6), 1915–1942 (2014).
  • Kirmani S , YoungWF. Hereditary Paraganglioma-Pheochromocytoma Syndrom. (1993).
  • Plouin PF , AmarL, DekkersOMet al. European Society of Endocrinology Clinical Practice Guideline for long-term follow-up of patients operated on for a phaeochromocytoma or a paraganglioma. Eur. J. Endocrinol.174(5), G1–G10 (2016).
  • Bilek R , VlcekP, SafarikLet al. Chromogranin A in the laboratory diagnosis of pheochromocytoma and paraganglioma. Cancers11(4), 15 (2019).
  • Nobels FR , KwekkeboomDJ, BouillonR, LambertsSW. Chromogranin A: its clinical value as marker of neuroendocrine tumours. Eur. J. Clin. Invest.28(6), 431–440 (1998).
  • Chen Y , ZhengX, ChenGet al. Immunoassay for LMP1 in nasopharyngeal tissue based on surface-enhanced Raman scattering. Int. J. Nanomed.7, 73–82 (2012).
  • Ku JW , ZhangDY, SongXet al. Characterization of tissue chromogranin A (CgA) immunostaining and clinicohistopathological changes for the 125 Chinese patients with primary small cell carcinoma of the esophagus. Dis. Esophagus30(8), 7 (2017).
  • Zhao Y , WangY, ZengS, HuXR. LMP1 expression is positively associated with metastasis of nasopharyngeal carcinoma: evidence from a meta-analysis. J. Clin. Pathol.65(1), 41–45 (2012).
  • Lane LA , QianX, NieS. SERS Nanoparticles in medicine: from label-free detection to spectroscopic tagging. Chem. Rev.115(19), 10489–10529 (2015).
  • Kneipp J , KneippH, KneippK. SERS – a single-molecule and nanoscale tool for bioanalytics. Chem. Soc. Rev.37(5), 1052–1060 (2008).
  • Li M , CushingSK, ZhangJet al. Three-dimensional hierarchical plasmonic nano-architecture enhanced surface-enhanced Raman scattering immunosensor for cancer biomarker detection in blood plasma. Acs Nano7(6), 4967–4976 (2013).
  • Xu SP , JiXH, XuWQet al. Surface-enhanced Raman scattering studies on immunoassay. J. Biomed. Opt.10(3), 12 (2005).
  • Grubisha DS , LipertRJ, ParkHY, DriskellJ, PorterMD. Femtomolar detection of prostate-specific antigen: an immunoassay based on surface-enhanced Raman scattering and immunogold labels. Anal. Chem.75(21), 5936–5943 (2003).
  • Pang YF , WangCG, LuLC, WangCW, SunZW, XiaoR. Dual-SERS biosensor for one-step detection of microRNAs in exosome and residual plasma of blood samples for diagnosing pancreatic cancer. Biosens. Bioelectron.130, 204–213 (2019).
  • Bell SEJ , SirimuthuNMS. Surface-enhanced Raman spectroscopy (SERS) for sub-micromolar detection of DNA/RNA mononucleotides. J. Am. Chem. Soc.128(49), 15580–15581 (2006).
  • Barhoumi A , ZhangD, TamF, HalasNJ. Surface-enhanced Raman spectroscopy of DNA. J. Am. Chem. Soc.130(16), 5523–5529 (2008).
  • Dasary SSR , SinghAK, SenapatiD, YuHT, RayPC. Gold nanoparticle based label-free SERS probe for ultrasensitive and selective detection of trinitrotoluene. J. Am. Chem. Soc.131(38), 13806–13812 (2009).
  • Kneipp K , HakaAS, KneippHet al. Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles. Appl. Spectrosc.56(2), 150–154 (2002).
  • Hu CX , WangJX, ZhengCet al. Raman spectra exploring breast tissues: comparison of principal component analysis and support vector machine-recursive feature elimination. Med. Phys.40(6), 7 (2013).
  • Meksiarun P , IshigakiM, Huck-PezzeiVACet al. Comparison of multivariate analysis methods for extracting the paraffin component from the paraffin-embedded cancer tissue spectra for Raman imaging. Sci. Rep.7, 10 (2017).
  • Almehmadi LM , CurleySM, TokranovaNA, TenenbaumSA, LednevIK. Surface enhanced Raman spectroscopy for single molecule protein detection. Sci. Rep.9, 9 (2019).
  • Li Y , WangZ, MuX, MaA, GuoS. Raman tags: novel optical probes for intracellular sensing and imaging. Biotechnol. Adv.35(2), 168–177 (2017).
  • Xiaohui JI , ShupingXU, WangLet al. Immunoassay using the probe-labeled Au/Ag core-shell nanoparticles based on surface-enhanced Raman scattering. Colloid. Surface A257–258, 171–175 (2005).
  • Frens G . Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci.241(105), 20–22 (1973).
  • Samal AK , PolavarapuL, Rodal-CedeiraS, Liz-MarzanLM, Perez-JusteJ, Pastoriza-SantosI. Size tunable Au@Ag core shell nanoparticles: synthesis and surface-enhanced raman scattering properties. Langmuir29(48), 15076–15082 (2013).
  • Jeyachandran YL , MielczarskiJA, MielczarskiE, RaiB. Efficiency of blocking of non-specific interaction of different proteins by BSA adsorbed on hydrophobic and hydrophilic surfaces. J. Colloid Interface Sci.341(1), 136–142 (2010).
  • Topal F , GorenH, YucelF, SahinturkV, AydarY. Effect of consuming high-fat diet on the morphological parameters of adrenal gland. Bratislava Med. J.120(8), 593–600 (2019).
  • Cui X , ZhaoZ, ZhangG, ChenS, ZhaoY, LuJ. Analysis and classification of kidney stones based on Raman spectroscopy. Biomed. Opt. Express9(9), 4175–4183 (2018).
  • Zhang Z-M , ChenS, LiangY-Z. Baseline correction using adaptive iteratively reweighted penalized least squares. Analyst135(5), 1138–1146 (2010).
  • Lee H , GaoX, KimY-P. Immuno-nanoparticles for multiplex protein imaging in cells and tissues. Biochip J.12(2), 83–92 (2018).
  • Sun L , SungK-B, DentingerCet al. Composite organic-inorganic nanoparticles as Raman labels for tissue analysis. Nano Letters7(2), 351–356 (2007).
  • Lutz B , DentingerC, SunLet al. Raman nanoparticle probes for antibody-based protein detection in tissues. J. Histochem. Cytochem.56(4), 371–379 (2008).
  • Chon H , LimC, HaSMet al. On-chip immunoassay using surface-enhanced raman scattering of hollow gold nanospheres. Anal. Chem.82(12), 5290–5295 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.