261
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Dual-Responsive Mesoporous Silica Nanoparticles Coated with Carbon Dots and Polymers for Drug Encapsulation and Delivery

, , , , , , & ORCID Icon show all
Pages 2447-2458 | Received 07 Dec 2019, Accepted 21 Aug 2020, Published online: 18 Sep 2020

References

  • Chen W , GoldysEM, DengW. Light-induced liposomes for cancer therapeutics. Prog. Lipid Res.79, 101052 (2020).
  • Lv Q , ChengL, LuYet al. Thermosensitive exosome-liposome hybrid nanoparticle-mediated chemoimmunotherapy for improved treatment of metastatic peritoneal cancer. Adv. Sci.2000515, (2020).
  • Wan X , MinY, BludauHet al. Drug combination synergy in worm-like polymeric micelles improves treatment outcome for small cell and non-small-cell lung cancer. ACS Nano12(3), 2426–2439 (2018).
  • Zhang Y , GuoZ, CaoZet al. Endogenous albumin-mediated delivery of redox-responsive paclitaxel-loaded micelles for targeted cancer therapy. Biomaterials183, 243–257 (2018).
  • Moscariello P , NgDYW, JansenM, WeilT, LuhmannHJ, HedrichJ. Brain delivery of multifunctional dendrimer protein bioconjugates. Adv. Sci.5(5), 1700897 (2018).
  • Zhou Z , MaX, MurphyCJet al. Molecularly precise dendrimer-drug conjugates with tunable drug release for cancer therapy. Angew. Chem. Int. Ed.53(41), 10949–10955 (2014).
  • Wong BS , YoongSL, JagusiakAet al. Carbon nanotubes for delivery of small molecule drugs. Adv. Drug Deliv. Rev.65(15), 1964–2015 (2013).
  • Xing J , LiuZ, HuangYet al. Lentinan-modified carbon nanotubes as an antigen delivery system modulate immune response in vitro and in vivo. ACS Appl. Mater. Interfaces8(30), 19276–19283 (2016).
  • Croissant JG , FatieievY, AlmalikA, KhashabNM. Mesoporous silica and organosilica nanoparticles: physical chemistry, biosafety, delivery strategies, and biomedical applications. Adv. Healthc. Mater.7(4), 1700287 (2018).
  • Manzano M , Vallet-RegíM. Mesoporous silica nanoparticles for drug delivery. Adv. Funct. Mater.30(2), 1902734 (2019).
  • Argyo C , WeissV, BräuchleC, BeinT. Multifunctional mesoporous silica nanoparticles as a universal platform for drug delivery. Chem. Mater.26(1), 435–451 (2013).
  • Song Y , LiY, XuQ, LiuZ. Mesoporous silica nanoparticles for stimuli-responsive controlled drug delivery: advances, challenges, and outlook. Int. J. Nanomedicine12, 87–110 (2016).
  • Croissant JG , FatieievY, KhashabNM. Degradability and clearance of silicon, organosilica, silsesquioxane, silica mixed oxide, and mesoporous silica nanoparticles. Adv. Mater.29(9), 1604634 (2017).
  • Singh RK , KnowlesJC, KimHW. Advances in nanoparticle development for improved therapeutics delivery: nanoscale topographical aspect. J. Tissue Eng.10, 1–9 (2019).
  • Kankala RK , HanYH, NaJet al. Nanoarchitectured structure and surface biofunctionality of mesoporous silica nanoparticles. Adv. Mater.32(23), 1907035 (2020).
  • Zhang X , YangP, DaiYet al. Multifunctional up-converting nanocomposites with smart polymer brushes gated mesopores for cell imaging and thermo/pH dual-responsive drug controlled release. Adv. Funct. Mater.23(33), 4067–4078 (2013).
  • Wu S , HuangX, DuX. Glucose- and pH-responsive controlled release of cargo from protein-gated carbohydrate-functionalized mesoporous silica nanocontainers. Angew. Chem. Int. Ed.52(21), 5580–5584 (2013).
  • Pan L , LiuJ, HeQ, ShiJ. Msn-mediated sequential vascular-to-cell nuclear-targeted drug delivery for efficient tumor regression. Adv. Mater.26(39), 6742–6748 (2014).
  • Zhang J , YuanZF, WangYet al. Multifunctional envelope-type mesoporous silica nanoparticles for tumor-triggered targeting drug delivery. J. Am. Chem. Soc.135(13), 5068–5073 (2013).
  • Zhang A , JungK, LiA, LiuJ, BoyerC. Recent advances in stimuli-responsive polymer systems for remotely controlled drug release. Prog. Polym. Sci.99, 101164 (2019).
  • Lu C , UrbanMW. Stimuli-responsive polymer nano-science: shape anisotropy, responsiveness, applications. Prog. Polym. Sci.78, 24–46 (2018).
  • Kanamala M , WilsonWR, YangM, PalmerBD, WuZ. Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: a review. Biomaterials85, 152–167 (2016).
  • Baeza A , GuisasolaE, Ruiz-HernándezE, Vallet-RegíM. Magnetically triggered multidrug release by hybrid mesoporous silica nanoparticles. Chem. Mater.24(3), 517–524 (2012).
  • Chang B , ShaX, GuoJ, JiaoY, WangC, YangW. Thermo and pH dual responsive, polymer shell coated, magnetic mesoporous silica nanoparticles for controlled drug release. J. Mater. Chem. A21(25), 9239–9247 (2011).
  • Paris JL , CabanasMV, ManzanoM, Vallet-RegiM. Polymer-grafted mesoporous silica nanoparticles as ultrasound-responsive drug carriers. ACS Nano9(11), 11023–11033 (2015).
  • Engin K , LeeperDB, CaterJR, ThistlethwaiteAJ, TupchongL, McfarlaneJD. Extracellular pH distribution in human tumours. Int. J. Hyperthermia11(2), 211–216 (1995).
  • Lee ES , GaoZ, BaeYH. Recent progress in tumor pH targeting nanotechnology. J. Control. Rel.132(3), 164–170 (2008).
  • Gisbert-Garzaran M , ManzanoM, Vallet-RegiM. pH-responsive mesoporous silica and carbon nanoparticles for drug delivery. Bioengineering4(1), 3 (2017).
  • Xu M , ZhangCY, WuJet al. PEG-detachable polymeric micelles self-assembled from amphiphilic copolymers for tumor-acidity-triggered drug delivery and controlled release. ACS Appl. Mater. Interfaces11(6), 5701–5713 (2019).
  • Xu J , LiuS. Polymeric nanocarriers possessing thermoresponsive coronas. Soft Matter4(9), 1745–1749 (2008).
  • Chen W , GlackinCA, HorwitzMA, ZinkJI. Nanomachines and other caps on mesoporous silica nanoparticles for drug delivery. Acc. Chem. Res.52(6), 1531–1542 (2019).
  • Wu Q , HouY, HanG. Mixed shell mesoporous silica nanoparticles for controlled drug encapsulation and delivery. Nanomedicine (Lond.)12(4), 2699–2711 (2017).
  • Cortez-Lemus NA , Licea-ClaverieA. Poly(N-vinylcaprolactam), a comprehensive review on a thermoresponsive polymer becoming popular. Prog. Polym. Sci.53, 1–51 (2016).
  • Liu J , DebuigneA, DetrembleurC, JérômeC. Poly(N-vinylcaprolactam): a thermoresponsive macromolecule with promising future in biomedical field. Adv. Healthc. Mater.3(12), 1941–1968 (2014).
  • Wu Y , LiuX, WuQ, YiJ, ZhangG. Carbon nanodots-based fluorescent turn-on sensor array for biothiols. Anal. Chem.89(13), 7084–7089 (2017).
  • Lv R , YangP, HeFet al. A yolk-like multifunctional platform for multimodal imaging and synergistic therapy triggered by a single near-infrared light. ACS Nano9(2), 1630–1647 (2015).
  • Liu Y , TianY, TianY, WangY, YangW. Carbon-dot-based nanosensors for the detection of intracellular redox state. Adv. Mater.27(44), 7156–7160 (2015).
  • Devi P , SainiS, KimKH. The advanced role of carbon quantum dots in nanomedical applications. Biosens. Bioelectron.141, 111158 (2019).
  • Shi X , MengH, SunYet al. Far-red to near-infrared carbon dots: preparation and applications in biotechnology. Small15(48), 1901507 (2019).
  • Xiao D , JiaH-Z, ZhangJ, LiuC-W, ZhuoR-X, ZhangX-Z. A dual-responsive mesoporous silica nanoparticle for tumor-triggered targeting drug delivery. Small10(3), 591–598 (2014).
  • Zeng X , LiuG, TaoWet al. A drug-self-gated mesoporous antitumor nanoplatform based on pH-sensitive dynamic covalent bond. Adv. Funct. Mater.27(11), 1605985 (2017).
  • Zhang Y , ZhuoP, YinHet al. Solid-state fluorescent carbon dots with aggregation-induced yellow emission for white light-emitting diodes with high luminous efficiencies. ACS Appl. Mater. Interfaces11(27), 24395–24403 (2019).
  • Lim SY , ShenW, GaoZ. Carbon quantum dots and their applications. Chem. Soc. Rev.44(1), 362–381 (2015).
  • Zang C , WangH, LiTet al. A light-responsive, self-immolative linker for controlled drug delivery via peptide– and protein–drug conjugates. Chem. Sci.10(39), 8973–8980 (2019).
  • Wu Q , YiJ, YinZet al. Synthesis and self-assembly of new amphiphilic thermosensitive poly(N-vinylcaprolactam)/poly(ε-caprolactone) block copolymers via the combination of ring-opening polymerization and click chemistry. J. Polym. Res.20(10), 262–270 (2013).
  • Brunauer S , DemingLS, DemingWE, TellerE. On a theory of the van der Waals adsorption of gases. J. Am. Chem. Soc.62(7), 1723–1732 (1940).
  • Tran AV , ShimK, Vo ThiTT, KookJK, AnSSA, LeeSW. Targeted and controlled drug delivery by multifunctional mesoporous silica nanoparticles with internal fluorescent conjugates and external polydopamine and graphene oxide layers. Acta Biomater.74, 397–413 (2018).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.