134
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Properties of Rapamycin Solid Lipid Nanoparticles for Lymphatic Access Through The Lungs & Part I: The Effect of Size

, , , , &
Pages 1927-1945 | Received 23 Feb 2020, Accepted 05 May 2020, Published online: 21 Aug 2020

References

  • Harknett EC , ChangWY, ByrnesSet al. Use of variability in national and regional data to estimate the prevalence of lymphangioleiomyomatosis. QJM104(11), 971–979 (2011).
  • Carsillo T , AstrinidisA, HenskeEP. Mutations in the tuberous sclerosis complex gene TSC2 are a cause of sporadic pulmonary lymphangioleiomyomatosis. Proc. Natl Acad. Sci. USA97(11), 6085–6090 (2000).
  • Smolarek TA , WessnerLL, MccormackFX, MyletJC, MenonAG, HenskeEP. Evidence that lymphangiomyomatosis is caused by TSC2 mutations: chromosome 16p13 loss of heterozygosity in angiomyolipomas and lymph nodes from women with lymphangiomyomatosis. Am. J. Hum. Genet.62(4), 810–815 (1998).
  • Sarbassov DD , AliSM, KimDHet al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol.14(14), 1296–1302 (2004).
  • Kumasaka T , SeyamaK, MitaniKet al. Lymphangiogenesis-mediated shedding of LAM cell clusters as a mechanism for dissemination in lymphangioleiomyomatosis. Am. J. Surg. Pathol.29(10), 1356–1366 (2005).
  • Zheng J , SambolNC, ZimmermanDJ, ZaidiA. Population pharmacokinetics (PK) of sirolimus. Clin. Pharmacol. Ther.59(2), 150–150 (1996).
  • Bissler JJ , MccormackFX, YoungLRet al. Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. N. Engl. J. Med.358(2), 140–151 (2008).
  • Desai N , HeenanS, MortimerPS. Sirolimus-associated lymphoedema: eight new cases and a proposed mechanism. Br. J. Dermatol.160(6), 1322–1326 (2009).
  • Labiris NR , DolovichMB. Pulmonary drug delivery. Part I: physiological factors affecting therapeutic effectiveness of aerosolized medications. Br. J. Clin. Pharmacol.56(6), 588–599 (2003).
  • Landh E , MoirLM, GomesDos Reis L, TrainiD, YoungPM, OngHX. Inhaled rapamycin solid lipid nano particles for the treatment of Lymphangioliomyomatosis. Eur. J. Pharm. Sci.124, 105098 (2019).
  • Singh I , SwamiR, KhanW, SistlaR. Lymphatic system: a prospective area for advanced targeting of particulate drug carriers. Expert Opin. Drug Deliv.11(2), 211–229 (2014).
  • Videira MA , BotelhoMF, SantosAC, GouveiaLF, DeLima JJ, AlmeidaAJ. Lymphatic uptake of pulmonary delivered radiolabelled solid lipid nanoparticles. J. Drug Target.10(8), 607–613 (2002).
  • Trevaskis NL , KaminskasLM, PorterCJ. From sewer to saviour – targeting the lymphatic system to promote drug exposure and activity. Nat. Rev. Drug Discov.14(11), 781–803 (2015).
  • Mohammad AK , AmayrehLK, MazzaraJM, ReinekeJJ. Rapid lymph accumulation of polystyrene nanoparticles following pulmonary administration. Pharm. Res.30(2), 424–434 (2013).
  • Latimer P , MenchacaM, SnyderRMet al. Aerosol delivery of liposomal formulated paclitaxel and vitamin E analog reduces murine mammary tumor burden and metastases. Exp. Biol. Med. (Maywood)234(10), 1244–1252 (2009).
  • Li AV , MoonJJ, AbrahamWet al. Generation of effector memory T cell-based mucosal and systemic immunity with pulmonary nanoparticle vaccination. Sci. Transl. Med.5(204), 204ra130 (2013).
  • Triacca V , GucE, KilarskiWW, PisanoM, SwartzMA. Transcellular pathways in lymphatic endothelial cells regulate changes in solute transport by fluid stress. Circ. Res.120(9), 1440–1452 (2017).
  • Cueni LN , DetmarM. New insights into the molecular control of the lymphatic vascular system and its role in disease. J. Invest. Dermatol.126(10), 2167–2177 (2006).
  • Moghimi SM , Rajabi-SiahboomiR. Advanced colloid-based systems for efficient delivery of drugs and diagnostic agents to the lymphatic tissues. Prog. Biophys. Mol. Biol.65(3), 221–249 (1996).
  • Luo Y , ZhouH, LiuLet al. The fungicide ciclopirox inhibits lymphatic endothelial cell tube formation by suppressing VEGFR-3-mediated ERK signaling pathway. Oncogene30(18), 2098–2107 (2011).
  • Schacht V , RamirezMI, HongYKet al. T1alpha/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO J.22(14), 3546–3556 (2003).
  • Haghi M , YoungPM, TrainiD, JaiswalR, GongJ, BebawyM. Time- and passage-dependent characteristics of a Calu-3 respiratory epithelial cell model. Drug Dev. Ind. Pharm.36(10), 1207–1214 (2010).
  • Ong HX , TrainiD, BebawyM, YoungPM. Epithelial profiling of antibiotic controlled release respiratory formulations. Pharm. Res.28(9), 2327–2338 (2011).
  • Ong HX , TrainiD, SalamaR, AndersonSD, DaviskasE, YoungPM. The effects of mannitol on the transport of ciprofloxacin across respiratory epithelia. Mol. Pharm.10(8), 2915–2924 (2013).
  • U.S Department of Health and Human Service . Guidance for industry; dissolution testing of immediate release solid oral dosage forms. Food and Drug Administration, (1997).
  • Moore JW , FlannerHH. Mathematical comparison of dissolution profiles. Pharm. Technol.20(6), 64–74 (1996).
  • Goncharova EA , GoncharovDA, LimPN, NoonanD, KrymskayaVP. Modulation of cell migration and invasiveness by tumor suppressor TSC2 in lymphangioleiomyomatosis. Am. J. Respir. Cell Mol. Biol.34(4), 473–480 (2006).
  • Goncharova EA , GoncharovDA, LiHet al. mTORC2 is required for proliferation and survival of TSC2-null cells. Mol. Cell. Biol.31(12), 2484–2498 (2011).
  • Goncharova EA , GoncharovDA, EszterhasAet al. Tuberin regulates p70 S6 kinase activation and ribosomal protein S6 phosphorylation. A role for the TSC2 tumor suppressor gene in pulmonary lymphangioleiomyomatosis (LAM). J. Biol. Chem.277(34), 30958–30967 (2002).
  • Ng HY , OliverBG, BurgessJK, KrymskayaVP, BlackJL, MoirLM. Doxycycline reduces the migration of tuberous sclerosis complex-2 null cells – effects on RhoA-GTPase and focal adhesion kinase. J. Cell. Mol. Med.19(11), 2633–2646 (2015).
  • Marsh KM , SchipperD, FerngASet al. Metabolic impact of rapamycin (sirolimus) and B-estradiol using mouse embryonic fibroblasts as a model for lymphangioleiomyomatosis. Lung195(4), 425–430 (2017).
  • Hillaireau H , CouvreurP. Nanocarriers’ entry into the cell: relevance to drug delivery. Cell. Mol. Life Sci.66(17), 2873–2896 (2009).
  • Schafer V , Von BriesenH, AndreesenRet al. Phagocytosis of nanoparticles by human immunodeficiency virus (HIV)-infected macrophages: a possibility for antiviral drug targeting. Pharm. Res.9(4), 541–546 (1992).
  • Moghimi SM , SzebeniJ. Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog. Lipid Res.42(6), 463–478 (2003).
  • Laplante M , SabatiniDM. mTOR signaling. Cold Spring Harb. Perspect. Biol.4(2), 274–293 (2012).
  • Stewart CE , TorrEE, MohdJamili NH, BosquillonC, SayersI. Evaluation of differentiated human bronchial epithelial cell culture systems for asthma research. J. Allergy (Cairo)2012, 943982 (2012).
  • Bur M , HuwerH, MuysL, LehrCM. Drug transport across pulmonary epithelial cell monolayers: effects of particle size, apical liquid volume, and deposition technique. J. Aerosol Med. Pulm. Drug Deliv.23(3), 119–127 (2010).
  • Gumbleton M , AbulrobAG, CampbellL. Caveolae: an alternative membrane transport compartment. Pharm. Res.17(9), 1035–1048 (2000).
  • Rejman J , OberleV, ZuhornIS, HoekstraD. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem. J.377(Pt 1), 159–169 (2004).
  • Haghi M , OngHX, TrainiD, YoungP. Across the pulmonary epithelial barrier: Integration of physicochemical properties and human cell models to study pulmonary drug formulations. Pharmacol. Ther.144(3), 235–252 (2014).
  • Fahy JV , DickeyBF. Airway mucus function and dysfunction. N. Engl. J. Med.363(23), 2233–2247 (2010).
  • Olsson B Bondesson E , BorgströmLet al. Pulmonary drug metabolism, clearance, and absorption. In: Controlled pulmonary drug delivery.SmythHDC, HickeyAJ ( Eds). Springer, NY, USA, 21–50 (2011).
  • Kakei Y , AkashiM, ShigetaT, HasegawaT, KomoriT. Alteration of cell–cell junctions in cultured human lymphatic endothelial cells with inflammatory cytokine stimulation. Lymphat. Res. Biol.12(3), 136–143 (2014).
  • Leach L , ClarkP, LampugnaniMG, ArroyoAG, DejanaE, FirthJA. Immunoelectron characterisation of the inter-endothelial junctions of human term placenta. J. Cell Sci.104(Pt 4), 1073–1081 (1993).
  • Fukunaga Y , LiuH, ShimizuM, KomiyaS, KawasujiM, NagafuchiA. Defining the roles of beta-catenin and plakoglobin in cell-cell adhesion: isolation of beta-catenin/plakoglobin-deficient F9 cells. Cell Struct. Funct.30(2), 25–34 (2005).
  • Mcintire GL , BaconER, TonerJLet al. Pulmonary delivery of nanoparticles of insoluble, iodinated CT x-ray coNtrast agents to lung draining lymph nodes in dogs. J. Pharm. Sci.87(11), 1466–1470 (1998).
  • Breslin JW . Mechanical forces and lymphatic transport. Microvasc. Res.96, 46–54 (2014).
  • Wiig H , SwartzMA. Interstitial fluid and lymph formation and transport: physiological regulation and roles in inflammation and cancer. Physiol. Rev.92(3), 1005–1060 (2012).
  • Dobbins WO , RollinsEL3rd. Intestinal mucosal lymphatic permeability: an electron microscopic study of endothelial vesicles and cell junctions. J. Ultrastruct. Res.33(1), 29–59 (1970).
  • Ishitsuka K , HideshimaT, HamasakiMet al. Honokiol overcomes conventional drug resistance in human multiple myeloma by induction of caspase-dependent and -independent apoptosis. Blood106(5), 1794–1800 (2005).
  • Danussi C , SpessottoP, PetruccoAet al. Emilin1 deficiency causes structural and functional defects of lymphatic vasculature. Mol. Cell. Biol.28(12), 4026–4039 (2008).
  • Wen J , FuAF, ChenLJet al. Liposomal honokiol inhibits VEGF-D-induced lymphangiogenesis and metastasis in xenograft tumor model. Int. J. Cancer124(11), 2709–2718 (2009).
  • Kaipainen A , KorhonenJ, MustonenTet al. Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc. Natl Acad. Sci. USA92(8), 3566–3570 (1995).
  • Kukk E , LymboussakiA, TairaSet al. VEGF-C receptor binding and pattern of expression with VEGFR-3 suggests a role in lymphatic vascular development. Development122(12), 3829–3837 (1996).
  • Kumasaka T , SeyamaK, MitaniKet al. Lymphangiogenesis in lymphangioleiomyomatosis: its implication in the progression of lymphangioleiomyomatosis. Am. J. Surg. Pathol.28(8), 1007–1016 (2004).
  • Seyama K , KumasakaT, SoumaSet al. Vascular endothelial growth factor-D is increased in serum of patients with lymphangioleiomyomatosis. Lymphat. Res. Biol.4(3), 143–152 (2006).
  • Proud CG . mTOR signalling in health and disease. Biochem. Soc. Trans.39(2), 431–436 (2011).
  • Zoncu R , EfeyanA, SabatiniDM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol.12(1), 21–35 (2011).
  • Huber S , BrunsCJ, SchmidGet al. Inhibition of the mammalian target of rapamycin impedes lymphangiogenesis. Kidney Int.71(8), 771–777 (2007).
  • Kobayashi S , KishimotoT, KamataS, OtsukaM, MiyazakiM, IshikuraH. Rapamycin, a specific inhibitor of the mammalian target of rapamycin, suppresses lymphangiogenesis and lymphatic metastasis. Cancer Sci.98(5), 726–733 (2007).
  • Hammer T , TritsarisK, HubschmannMVet al. IL-20 activates human lymphatic endothelial cells causing cell signalling and tube formation. Microvasc. Res.78(1), 25–32 (2009).
  • Huo Y , IadevaiaV, ProudCG. Differing effects of rapamycin and mTOR kinase inhibitors on protein synthesis. Biochem. Soc. Trans.39(2), 446–450 (2011).
  • Podgrabinska S , BraunP, VelascoP, KloosB, PepperMS, SkobeM. Molecular characterization of lymphatic endothelial cells. Proc. Natl Acad. Sci. USA99(25), 16069–16074 (2002).
  • Luo Y , LiuL, RogersDet al. Rapamycin inhibits lymphatic endothelial cell tube formation by downregulating vascular endothelial growth factor receptor 3 protein expression. Neoplasia14(3), 228–237 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.