654
Views
2
CrossRef citations to date
0
Altmetric
Review

Nanomaterial-Based Scaffolds for Bone Tissue Engineering and Regeneration

, , , , , , , , , , ORCID Icon & show all
Pages 1995-2017 | Received 17 Mar 2020, Accepted 18 Jun 2020, Published online: 19 Aug 2020

References

  • Keller L , PijnenburgL, Idoux-GilletYet al. Preclinical safety study of a combined therapeutic bone wound dressing for osteoarticular regeneration. Nat. Commun.10(1), 1–10 (2019).
  • Giannoudis P V , DinopoulosH, TsiridisE. Bone substitutes: an update. Injury36(3), S20–S27 (2005).
  • Burge R , Dawson-HughesB, SolomonDH, WongJB, KingA, TostesonA. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J. Bone Miner. Res.22(3), 465–475 (2007).
  • Borgström F , LekanderI, IvergårdMet al. The International Costs and Utilities Related to Osteoporotic Fractures Study (ICUROS) – quality of life during the first 4 months after fracture. Osteoporos. Int.24(3), 811–823 (2013).
  • Bak M , JacobsonAS, BuchbinderD, UrkenML. Contemporary reconstruction of the mandible. Oral Oncol.46(2), 71–76 (2010).
  • Agarwal R , GarcíaAJ. Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair. Adv. Drug Deliv. Rev.94, 53–62 (2015).
  • Atala A , KurtisKasper F, MikosAG. Engineering complex tissues. Sci. Transl. Med.4(160), 1–11 (2012).
  • Kim HD , AmirthalingamS, KimSL, LeeSS, RangasamyJ, HwangNS. Biomimetic materials and fabrication approaches for bone tissue engineering. Adv. Healthc. Mater.6(23), 1700612 (2017).
  • Wojtowicz AM , ShekaranA, OestMEet al. Coating of biomaterial scaffolds with the collagen-mimetic peptide GFOGER for bone defect repair. Biomaterials31(9), 2574–2582 (2010).
  • Terzaki K , KissamitakiM, SkarmoutsouAet al. Pre-osteoblastic cell response on three-dimensional, organic–inorganic hybrid material scaffolds for bone tissue engineering. J. Biomed. Mater. Res. - Part A101A(8), 2283–2294 (2013).
  • Saiz E , ZimmermannEA, LeeJS, WegstUGK, TomsiaAP. Perspectives on the role of nanotechnology in bone tissue engineering. Dent. Mater.29(1), 103–115 (2013).
  • Walmsley GG , McArdleA, TevlinRet al. Nanotechnology in bone tissue engineering. Nanomedicine11(5), 1253–1263 (2015).
  • Wang Q , YanJ, YangJ, LiB. Nanomaterials promise better bone repair. Mater. Today.19(8), 451–463 (2016).
  • Gong T , XieJ, LiaoJ, ZhangT, LinS, LinY. Nanomaterials and bone regeneration. Bone Res.3(August), 15029 (2015).
  • McMahon RE , WangL, SkorackiR, MathurAB. Development of nanomaterials for bone repair and regeneration. J. Biomed. Mater. Res. B. Appl. Biomater.101(2), 387–397 (2013).
  • Liu H , XuGW, WangYFet al. Composite scaffolds of nano-hydroxyapatite and silk fibroin enhance mesenchymal stem cell-based bone regeneration via the interleukin 1 alpha autocrine/paracrine signaling loop. Biomaterials49, 103–112 (2015).
  • Chocholata P , KuldaV, BabuskaV. Fabrication of scaffolds for bone-tissue regeneration. Materials (Basel)12(4), 568 (2019).
  • Stevens MM , GeorgeJH. Exploring and engineering the cell surface interface. Science (80-.).310(5751), 1135–1138 (2005).
  • Bayliss L , MahoneyDJ, MonkP. Normal bone physiology, remodelling and its hormonal regulation. Surgery30(2), 47–53 (2012).
  • Walsh JS . Normal bone physiology, remodelling and its hormonal regulation. Surg. (United Kingdom)36(1), 1–6 (2018).
  • Kular J , TicknerJ, ChimSM, XuJ. An overview of the regulation of bone remodelling at the cellular level. Clin. Biochem.45(12), 863–873 (2012).
  • Landis WJ , SilverFH. Mineral deposition in the extracellular matrices of vertebrate tissues: identification of possible apatite nucleation sites on type I collagen. Cells Tissues Organs.189(1–4), 20–24 (2008).
  • Wang P , ZhaoL, LiuJ, WeirMD, ZhouX, XuHHKK. Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells. Bone Res.2(3), 14017 (2014).
  • Reznikov N , BiltonM, LariL, StevensMM, KrögerR. Fractal-like hierarchical organization of bone begins at the nanoscale. Science (80-.).360(6388), (2018).
  • Liu Y , LuoD, WangT. Hierarchical structures of bone and bioinspired bone tissue engineering. Small.12(34), 4611–4632 (2016).
  • Stevens MM . Biomaterials for bone tissue engineering. Mater. Today11(5), 18–25 (2008).
  • Weiner S , WagnerHD. The material bone: structure-mechanical function relations. Annu. Rev. Mater. Sci.28(1), 271–298 (1998).
  • Kunstmann J , BezuglyV, RabbelH, RümmeliMH, CunibertiG. Unveiling the atomic structure of single-wall boron nanotubes. Adv. Funct. Mater.24(26), 4127–4134 (2014).
  • Li Y , LiuC. Nanomaterial-based bone regeneration. Nanoscale.9(15), 4862–4874 (2017).
  • Zhang L , WebsterTJ. Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today4(1), 66–80 (2009).
  • Vieira S , VialS, ReisRL, OliveiraJM. Nanoparticles for bone tissue engineering. Biotechnol. Prog.33(3), 590–611 (2017).
  • Lichte P , PapeHC, PufeT, KobbeP, FischerH. Scaffolds for bone healing: concepts, materials and evidence. Injury42(6), 569–573 (2011).
  • Larry L H , JuliaM P. Third-generation biomedical materials. Science (80-.).295(February), 1014–1017 (2002).
  • Webster TJ , EjioforJU. Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials25(19), 4731–4739 (2004).
  • Ahn T-K , LeeDH, KimT-Set al. Modification of titanium implant and titanium dioxide for bone tissue engineering. Adv. Exp. Med. Biol.1077, 355–368 (2018).
  • Jayakumar R , RamachandranR, DivyaraniVV, ChennazhiKP, TamuraH, NairS V. Fabrication of chitin-chitosan/nano TiO2-composite scaffolds for tissue engineering applications. Int. J. Biol. Macromol.48(2), 336–344 (2011).
  • von Wilmowsky C , BauerS, LutzRet al. In vivo evaluation of anodic TiO2 nanotubes: an experimental study in the pig. J. Biomed. Mater. Res. B. Appl. Biomater.89(1), 165–171 (2009).
  • Zhu Q , LiX, FanZet al. Biomimetic polyurethane/TiO2 nanocomposite scaffolds capable of promoting biomineralization and mesenchymal stem cell proliferation. Mater. Sci. Eng. C.85, 79–87 (2018).
  • Gerhardt LC , JellGMR, BoccacciniAR. Titanium dioxide (TiO2) nanoparticles filled poly(D,L lactid acid) (PDLLA) matrix composites for bone tissue engineering. J. Mater. Sci. Mater. Med.18(7), 1287–1298 (2007).
  • Lee D , HeoDN, KimHJet al. Inhibition of osteoclast differentiation and bone resorption by bisphosphonate-conjugated gold nanoparticles. Sci. Rep.6(February), 1–11 (2016).
  • Yi C , LiuD, FongCC, ZhangJ, YangM. Gold nanoparticles promote osteogenic differentiation of mesenchymal stem cells through p38 MAPK pathway. ACS Nano.4(11), 6439–6448 (2010).
  • Liu DD , ZhangJC, YiCQ, YangMS. The effects of gold nanoparticles on the proliferation, differentiation, and mineralization function of MC3T3-E1 cells in vitro. Chinese Sci. Bull.55(11), 1013–1019 (2010).
  • Jang JH , CastanoO, KimHW. Electrospun materials as potential platforms for bone tissue engineering. Adv. Drug Deliv. Rev.61(12), 1065–1083 (2009).
  • Sai Nievethitha S , SubhapradhaN, SaravananDet al. Nanoceramics on osteoblast proliferation and differentiation in bone tissue engineering. Int. J. Biol. Macromol.98, 67–74 (2017).
  • Webster TJ , ErgunC, DoremusRH, SiegelRW, BiziosR. Enhanced osteoclast-like cell functions on nanophase ceramics. Biomaterials22(11), 1327–1333 (2001).
  • Bohner M . Design of ceramic-based cements and putties for bone graft substitution. Eur. Cell. Mater.20, 1–12 (2010).
  • Zhang J , LiuW, SchnitzlerV, TancretF, BoulerJM. Calcium phosphate cements for bone substitution: chemistry, handling and mechanical properties. Acta Biomater.10(3), 1035–1049 (2014).
  • Bose S , TarafderS. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater.8(4), 1401–1421 (2012).
  • Alves Cardoso D , JansenJA, LeeuwenburghSCG. Synthesis and application of nanostructured calcium phosphate ceramics for bone regeneration. J. Biomed. Mater. Res. B. Appl. Biomater.100(8), 2316–2326 (2012).
  • Renji Z , TianshiW, YongnianY. Preparation of bioactive hydroxyapatite on pure titanium. J. Bioact. Compat. Polym.24(Suppl. 1), 169–182 (2009).
  • Khalil KA , KimSW, KimHY. Consolidation and mechanical properties of nanostructured hydroxyapatite-(ZrO2 + 3 mol% Y2O3) bioceramics by high-frequency induction heat sintering. Mater. Sci. Eng. A.456(1–2), 368–372 (2007).
  • Kubasiewicz-Ross P , HadzikJ, SeeligerJet al. New nano-hydroxyapatite in bone defect regeneration: a histological study in rats. Ann. Anat.213, 83–90 (2017).
  • Ye P , YuB, DengJ, SheR-F, HuangW-L. Application of silk fibroin/chitosan/nano-hydroxyapatite composite scaffold in the repair of rabbit radial bone defect. Exp. Ther. Med.14(6), 5547–5553 (2017).
  • Martin RA , YueS, HannaJ Vet al. Characterizing the hierarchical structures of bioactive sol-gel silicate glass and hybrid scaffolds for bone regeneration. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.370(1963), 1422–1443 (2012).
  • Weng L , BodaSK, TeusinkMJ, ShulerFD, LiX, XieJ. Binary doping of strontium and copper enhancing osteogenesis and angiogenesis of bioactive glass nanofibers while suppressing osteoclast activity. ACS Appl. Mater. Interfaces.9(29), 24484–24496 (2017).
  • Kim H-W , LeeH-H, KnowlesJC. Nanofibrous glass tailored with apatite-fibronectin interface for bone cell stimulation. J. Nanosci. Nanotechnol.8(6), 3013–3019 (2008).
  • Eivazzadeh-Keihan R , MalekiA, dela Guardia Met al. Carbon based nanomaterials for tissue engineering of bone: building new bone on small black scaffolds: a review. J. Adv. Res.18(March), 185–201 (2019).
  • Venkatesan J , PallelaR, KimSK. Applications of carbon nanomaterials in bone tissue engineering. J. Biomed. Nanotechnol.10(10), 3105–3123 (2014).
  • Shin SR , LiYC, JangHLet al. Graphene-based materials for tissue engineering. Adv. Drug Deliv. Rev.105, 255–274 (2016).
  • Gerasimenko AY , IchkitidzeLP, PodgaetskyVM, SelishchevSV. Biomedical applications of promising nanomaterials with carbon nanotubes. Biomed. Eng. (NY)48(6), 310–314 (2015).
  • Newman P , MinettA, Ellis-BehnkeR, ZreiqatH. Carbon nanotubes: their potential and pitfalls for bone tissue regeneration and engineering. Nanomed. Nanotechnol. Biol. Med.9(8), 1139–1158 (2013).
  • Sun L , ZhangY. The biocompatibility of carbon nanotubes. J. Biomed. Eng.25(3), 742–746 (2008).
  • Usui Y , AokiK, NaritaNet al. Carbon nanotubes with high bone-tissue compatibility and bone-formation acceleration effects. Small4(2), 240–246 (2008).
  • Xu B , JuY, CuiY, SongG. Carbon nanotube array inducing osteogenic differentiation of human mesenchymal stem cells. Mater. Sci. Eng. C.51, 182–188 (2015).
  • Li X , LiuH, NiuXet al. The use of carbon nanotubes to induce osteogenic differentiation of human adipose-derived MSCs in vitro and ectopic bone formation in vivo. Biomaterials33(19), 4818–4827 (2012).
  • Shadjou N , HasanzadehM. Graphene and its nanostructure derivatives for use in bone tissue engineering: recent advances. J. Biomed. Mater. Res. - Part A.104(5), 1250–1275 (2016).
  • Shadjou N , HasanzadehM, KhalilzadehB. Graphene based scaffolds on bone tissue engineering. Bioengineered9(1), 38–47 (2018).
  • Gu M , LiuY, ChenTet al. Is graphene a promising nano-material for promoting surface modification of implants or scaffold materials in bone tissue engineering? Tissue Eng. - Part B Rev. 20(5), 477–491 (2014).
  • Talukdar Y , RashkowJT, LalwaniG, KanakiaS, SitharamanB. The effects of graphene nanostructures on mesenchymal stem cells. Biomaterials35(18), 4863–4877 (2014).
  • Park KO , LeeJH, ParkJHet al. Graphene oxide-coated guided bone regeneration membranes with enhanced osteogenesis: spectroscopic analysis and animal study. Appl. Spectrosc. Rev.51(7–9), 540–551 (2016).
  • Nayak TR , AndersenH, MakamVSet al. Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano.5(6), 4670–4678 (2011).
  • Liu Y , ChenT, DuFet al. Single-layer graphene enhances the osteogenic differentiation of human mesenchymal stem cells in vitro and in vivo. J. Biomed. Nanotechnol.12(6), 1270–1284 (2016).
  • Elkhenany H , AmelseL, LafontAet al. Graphene supports in vitro proliferation and osteogenic differentiation of goat adult mesenchymal stem cells: potential for bone tissue engineering. J. Appl. Toxicol.35(4), 367–374 (2015).
  • Elkhenany H , BourdoS, HechtSet al. Graphene nanoparticles as osteoinductive and osteoconductive platform for stem cell and bone regeneration. Nanomedicine Nanotechnology, Biol. Med.13(7), 2117–2126 (2017).
  • Bose S , RoyM, BandyopadhyayA. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol.30(10), 546–554 (2012).
  • Yang L , ZhangL, WebsterTJ. Nanobiomaterials: state of the art and future trends. Adv. Eng. Mater.13(6), 197–217 (2011).
  • Woo KM , ChenVJ, JungH-Met al. Comparative evaluation of nanofibrous scaffolding for bone regeneration in critical-size calvarial defects. Tissue Eng. Part A.15(8), 2155–2162 (2009).
  • Smith LL , NiziolekPJ, HaberstrohKM, NaumanEA, WebsterTJ. Decreased fibroblast and increased osteoblast adhesion on nanostructured NaOH-etched PLGA scaffolds. Int. J. Nanomedicine.2(3), 383–388 (2007).
  • Hsu SH , HuangS, WangYC, KuoYC. Novel nanostructured biodegradable polymer matrices fabricated by phase separation techniques for tissue regeneration. Acta Biomater.9(6), 6915–6927 (2013).
  • Ho MH , YaoCJ, LiaoMH, LinPI, LiuSH, ChenRM. Chitosan nanofiber scaffold improves bone healing via stimulating trabecular bone production due to upregulation of the Runx2/osteocalcin/alkaline phosphatase signaling pathway. Int. J. Nanomed.10, 5941–5954 (2015).
  • Yao S , LinX, XuYet al. Osteoporotic bone recovery by a highly bone-inductive calcium phosphate polymer-induced liquid-precursor. Adv. Sci.6(19), 1900683 (2019).
  • Kim H , CheL, HaY, RyuW. Mechanically-reinforced electrospun composite silk fibroin nanofibers containing hydroxyapatite nanoparticles. Mater. Sci. Eng. C.40, 324–335 (2014).
  • Roohani-Esfahani SI , Nouri-KhorasaniS, LuZ, AppleyardR, ZreiqatH. The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite-PCL composites. Biomaterials31(21), 5498–5509 (2010).
  • Chae T , YangH, LeungV, KoF, TroczynskiT. Novel biomimetic hydroxyapatite/alginate nanocomposite fibrous scaffolds for bone tissue regeneration. J. Mater. Sci. Mater. Med.24(8), 1885–1894 (2013).
  • Laschke MW , StroheA, MengerMD, AliniM, EglinD. In vitro and in vivo evaluation of a novel nanosize hydroxyapatite particles/poly(ester-urethane) composite scaffold for bone tissue engineering. Acta Biomater.6(6), 2020–2027 (2010).
  • Dhivya S , AjitaJ, SelvamuruganN. Metallic nanomaterials for bone tissue engineering. J. Biomed. Nanotechnol.11(10), 1675–1700 (2015).
  • J Hill M , QiB, BayaniahangarRet al. Nanomaterials for bone tissue regeneration: updates and future perspectives. Nanomedicine14(22), 2987–3006 (2019).
  • Forero JC , RoaE, ReyesJG, AcevedoC, OssesN. Development of useful biomaterial for bone tissue engineering by incorporating nano-copper-zinc alloy (nCuZn) in chitosan/gelatin/nano-hydroxyapatite (Ch/G/nHAp) scaffold. Materials (Basel).10(10), 1–15 (2017).
  • Tripathi A , SaravananS, PattnaikS, MoorthiA, PartridgeNC, SelvamuruganN. Bio-composite scaffolds containing chitosan/nano-hydroxyapatite/nano-copper-zinc for bone tissue engineering. Int. J. Biol. Macromol.50(1), 294–299 (2012).
  • Hasan A , WaibhawG, SaxenaV, PandeyLM. Nano-biocomposite scaffolds of chitosan, carboxymethyl cellulose and silver nanoparticle modified cellulose nanowhiskers for bone tissue engineering applications. Int. J. Biol. Macromol.111, 923–934 (2018).
  • Chaloupka K , MalamY, SeifalianAM. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol.28(11), 580–588 (2010).
  • Marsich E , BellomoF, TurcoG, TravanA, DonatiI, PaolettiS. Nano-composite scaffolds for bone tissue engineering containing silver nanoparticles: preparation, characterization and biological properties. J. Mater. Sci. Mater. Med.24(7), 1799–1807 (2013).
  • Saravanan S , NethalaS, PattnaikS, TripathiA, MoorthiA, SelvamuruganN. Preparation, characterization and antimicrobial activity of a bio-composite scaffold containing chitosan/nano-hydroxyapatite/nano-silver for bone tissue engineering. Int. J. Biol. Macromol.49(2), 188–193 (2011).
  • Khoshroo K , JafarzadehKashi TS, MoztarzadehF, TahririM, JazayeriHE, TayebiL. Development of 3D PCL microsphere/TiO2 nanotube composite scaffolds for bone tissue engineering. Mater. Sci. Eng. C70, 586–598 (2017).
  • Hirata E , UoM, TakitaH, AkasakaT, WatariF, YokoyamaA. Multiwalled carbon nanotube-coating of 3D collagen scaffolds for bone tissue engineering. Carbon NY49(10), 3284–3291 (2011).
  • Olivas-Armendariz I , Martel-EstradaSA, Mendoza-DuarteME, Jiménez-VegaF, García-CasillasP, Martínez-PérezCA. Biodegradable chitosan/multiwalled carbon nanotube composite for bone tissue engineering. J. Biomater. Nanobiotechnol.4(02), 204–211 (2013).
  • Wang W , HuangB, ByunJJ, BártoloP. Assessment of PCL/carbon material scaffolds for bone regeneration. J. Mech. Behav. Biomed. Mater.93, 52–60 (2019).
  • Vicentini N , GattiT, SalernoMet al. Effect of different functionalized carbon nanostructures as fillers on the physical properties of biocompatible poly(L-lactic acid) composites. Mater. Chem. Phys.214, 265–276 (2018).
  • Cheng Q , RutledgeK, JabbarzadehE. Carbon nanotube-poly(lactide-co-glycolide) composite scaffolds for bone tissue engineering applications. Ann. Biomed. Eng.41(5), 904–916 (2013).
  • Kim J , KimYR, KimYet al. Graphene-incorporated chitosan substrata for adhesion and differentiation of human mesenchymal stem cells. J. Mater. Chem. B.1(7), 933–938 (2013).
  • Duan S , YangX, MeiFet al. Enhanced osteogenic differentiation of mesenchymal stem cells on poly(L-lactide) nanofibrous scaffolds containing carbon nanomaterials. J. Biomed. Mater. Res. - Part A.103(4), 1424–1435 (2015).
  • Saravanan S , ChawlaA, VairamaniM, SastryTP, SubramanianKS, SelvamuruganN. Scaffolds containing chitosan, gelatin and graphene oxide for bone tissue regeneration in vitro and in vivo. Int. J. Biol. Macromol.104, 1975–1985 (2017).
  • Sitharaman B , ShiX, WalboomersXFet al. In vivo biocompatibility of ultra-short single-walled carbon nanotube/biodegradable polymer nanocomposites for bone tissue engineering. Bone43(2), 362–370 (2008).
  • Sahoo NG , PanYZ, LiL, BinC He. Nanocomposites for bone tissue regeneration. Nanomedicine8(4), 639–653 (2013).
  • Chiara G , LetiziaF, LorenzoFet al. Nanostructured biomaterials for tissue engineered bone tissue reconstruction. Int. J. Mol. Sci.13(1), 737–757 (2012).
  • Rameshbabu N , RaoKP, KumarTSS. Accelerated microwave processing of nanocrystalline hydroxyapatite. J. Mater. Sci.40(23), 6319–6323 (2005).
  • Pina S , OliveiraJM, ReisRL. Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review. Adv. Mater.27(7), 1143–1169 (2015).
  • Rodrigues SC , SalgadoCL, SahuA, GarciaMP, FernandesMH, MonteiroFJ. Preparation and characterization of collagen-nanohydroxyapatite biocomposite scaffolds by cryogelation method for bone tissue engineering applications. J. Biomed. Mater. Res. - Part A.101A(4), 1080–1094 (2013).
  • Siddiqui N , PramanikK. Development of fibrin conjugated chitosan/nano β-TCP composite scaffolds with improved cell supportive property for bone tissue regeneration. J. Appl. Polym. Sci.132(9), 1–10 (2015).
  • Peter M , GaneshN, SelvamuruganNet al. Preparation and characterization of chitosan-gelatin/nanohydroxyapatite composite scaffolds for tissue engineering applications. Carbohydr. Polym.80(3), 687–694 (2010).
  • Kim HH , ParkJB, KangMJ, ParkYH. Surface-modified silk hydrogel containing hydroxyapatite nanoparticle with hyaluronic acid-dopamine conjugate. Int. J. Biol. Macromol.70, 516–522 (2014).
  • Moeini S , MohammadiMR, SimchiA. In-situ solvothermal processing of polycaprolactone/hydroxyapatite nanocomposites with enhanced mechanical and biological performance for bone tissue engineering. Bioact. Mater.2(3), 146–155 (2017).
  • Lou T , WangX, SongG, GuZ, YangZ. Structure and properties of PLLA/β-TCP nanocomposite scaffolds for bone tissue engineering. J. Mater. Sci. Mater. Med.26(1), 1–7 (2015).
  • Wei G , MaPX. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials25(19), 4749–4757 (2004).
  • Ngiam M , LiaoS, PatilAJ, ChengZ, ChanCK, RamakrishnaS. The fabrication of nano-hydroxyapatite on PLGA and PLGA/collagen nanofibrous composite scaffolds and their effects in osteoblastic behavior for bone tissue engineering. Bone45(1), 4–16 (2009).
  • Murugan R , RamakrishnaS. Development of nanocomposites for bone grafting. Compos. Sci. Technol.65(15–16), 2385–2406 (2005).
  • Kweon H , LeeK-G, ChaeC-Het al. Development of nano-hydroxyapatite graft with silk fibroin scaffold as a new bone substitute. J. Oral Maxillofac. Surg.69(6), 1578–1586 (2011).
  • Huang J , ChenY, TangCet al. The relationship between substrate topography and stem cell differentiation in the musculoskeletal system. Cell. Mol. Life Sci.76(3), 505–521 (2019).
  • Loiselle AE , WeiL, FaryadMet al. Specific biomimetic hydroxyapatite nanotopographies enhance osteoblastic differentiation and bone graft osteointegration. Tissue Eng. - Part A.19(15–16), 1704–1712 (2013).
  • Li LL , QiaoSL, LiuWJet al. Intracellular construction of topology-controlled polypeptide nanostructures with diverse biological functions. Nat. Commun.8(1), 1–12 (2017).
  • Li G , ZhouT, LinS, ShiS, LinY. Nanomaterials for craniofacial and dental tissue engineering. J. Dent. Res.96(7), 725–732 (2017).
  • Li X , WangL, FanYet al. Nanostructured scaffolds for bone tissue engineering. J. Biomed. Mater. Res. A.101(8), 2424–2435 (2013).
  • Ahmed H . Nanostructure fabrication. In: Proceedings of the IEEE.IEEE, 1140–1148 (1991).
  • Li G , ZhangT, LiMet al. Electrospun fibers for dental and craniofacial applications. Curr. Stem Cell Res. Ther.9(3), 187–195 (2014).
  • Gandhimathi C , VenugopalJR, ThamAY, RamakrishnaS, KumarSD. Biomimetic hybrid nanofibrous substrates for mesenchymal stem cells differentiation into osteogenic cells. Mater. Sci. Eng. C.49, 776–785 (2015).
  • Yoshimoto H , ShinYM, TeraiH, VacantiJP. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials24(12), 2077–2082 (2003).
  • Holzwarth JM , MaPX. Biomimetic nanofibrous scaffolds for bone tissue engineering. Biomaterials32(36), 9622–9629 (2011).
  • Gui N , XuW, MyersDE, ShuklaR, TangHP, QianM. The effect of ordered and partially ordered surface topography on bone cell responses: a review. Biomater. Sci.6(2), 250–264 (2018).
  • Jiang J , PapoutsakisET. Stem-cell niche based comparative analysis of chemical and nano-mechanical material properties impacting ex vivo expansion and differentiation of hematopoietic and mesenchymal stem cells. Adv. Healthc. Mater.2(1), 25–42 (2013).
  • Xin X , HussainM, MaoJJ. Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold. Biomaterials28(2), 316–325 (2007).
  • Zhang Y , VenugopalJR, El-TurkiA, RamakrishnaS, SuB, LimCT. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials29(32), 4314–4322 (2008).
  • Frandsen CJ , BrammerKS, JinS. Variations to the nanotube surface for bone regeneration. Int. J. Biomater.2013, 513680 (2013).
  • Popat KC , LeoniL, GrimesCA, DesaiTA. Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials28(21), 3188–3197 (2007).
  • Brammer KS , OhS, CobbCJ, BjurstenLM, Heydevan der H, JinS. Improved bone-forming functionality on diameter-controlled TiO2 nanotube surface. Acta Biomater.5(8), 3215–3223 (2009).
  • Tanaka M , SatoY, ZhangMet al. In vitro and in vivo evaluation of a three-dimensional porous multi-walled carbon nanotube scaffold for bone regeneration. Nanomater. (Basel, Switzerland)7(2), 46 (2017).
  • Yan X , YangW, ShaoZ, YangS, LiuX. Graphene/single-walled carbon nanotube hybrids promoting osteogenic differentiation of mesenchymal stem cells by activating p38 signaling pathway. Int. J. Nanomed.11, 5473–5484 (2016).
  • Gupta A , LiberatiTA, VerhulstSJet al. Biocompatibility of single-walled carbon nanotube composites for bone regeneration. Bone Jt Res.4(5), 70–77 (2015).
  • Jing Z , WuY, SuWet al. Carbon nanotube reinforced collagen/hydroxyapatite scaffolds improve bone tissue formation in vitro and in vivo. Ann. Biomed. Eng.45(9), 2075–2087 (2017).
  • Oh S , DaraioC, ChenL-H, PisanicTR, FiñonesRR, JinS. Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. J. Biomed. Mater. Res. A.78(1), 97–103 (2006).
  • Sjöström T , DalbyMJ, HartA, TareR, OreffoROC, SuB. Fabrication of pillar-like titania nanostructures on titanium and their interactions with human skeletal stem cells. Acta Biomater.5(5), 1433–1441 (2009).
  • Dalby MJ , GadegaardN, TareRet al. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat. Mater.6(12), 997–1003 (2007).
  • Zhang S , MaB, LiuFet al. Polylactic acid nanopillar array-driven osteogenic differentiation of human adipose-derived stem cells determined by pillar diameter. Nano Lett.18(4), 2243–2253 (2018).
  • Cha KJ , HongJM, ChoDW, KimDS. Enhanced osteogenic fate and function of MC3T3-E1 cells on nanoengineered polystyrene surfaces with nanopillar and nanopore arrays. Biofabrication5(2), 025007 (2013).
  • Li NB , SunSJ, BaiHYet al. Preparation of well-distributed titania nanopillar arrays on Ti6Al4V surface by induction heating for enhancing osteogenic differentiation of stem cells. Nanotechnology29(4), 045101 (2018).
  • Hasan A , MorshedM, MemicA, HassanS, WebsterTJ, MareiHES. Nanoparticles in tissue engineering: applications, challenges and prospects. Int. J. Nanomed.13, 5637–5655 (2018).
  • Jayaraman P , GandhimathiC, VenugopalJR, BeckerDL, RamakrishnaS, SrinivasanDK. Controlled release of drugs in electrosprayed nanoparticles for bone tissue engineering. Adv. Drug Deliv. Rev.94(1), 77–95 (2015).
  • Cai L , GuinnAS, WangS. Exposed hydroxyapatite particles on the surface of photo-crosslinked nanocomposites for promoting MC3T3 cell proliferation and differentiation. Acta Biomater.7(5), 2185–2199 (2011).
  • Cao L , WangJ, HouJ, XingW, LiuC. Vascularization and bone regeneration in a critical sized defect using 2-N,6-O-sulfated chitosan nanoparticles incorporating BMP-2. Biomaterials35(2), 684–698 (2014).
  • Dyondi D , WebsterTJ, BanerjeeR. A nanoparticulate injectable hydrogel as a tissue engineering scaffold for multiple growth factor delivery for bone regeneration. Int. J. Nanomed.8, 47–59 (2012).
  • Heo SJ , KimSE, WeiJet al. In vitro and animal study of novel nano-hydroxyapatite/poly(ε-caprolactone) composite scaffolds fabricated by layer manufacturing process. Tissue Eng. - Part A.15(5), 977–989 (2009).
  • Dittler ML , UnalanI, GrünewaldAet al. Bioactive glass (45S5)-based 3D scaffolds coated with magnesium and zinc-loaded hydroxyapatite nanoparticles for tissue engineering applications. Colloids Surfaces B Biointerfaces.182, 110346 (2019).
  • Ha SW , ViggeswarapuM, HabibMM, BeckGR. Bioactive effects of silica nanoparticles on bone cells are size, surface, and composition dependent. Acta Biomater.82, 184–196 (2018).
  • Ha SW , NealeWeitzmann M, BeckGR. Bioactive silica nanoparticles promote osteoblast differentiation through stimulation of autophagy and direct association with LC3 and p62. ACS Nano8(6), 5898–5910 (2014).
  • Gandhimathi C , QuekYJ, EzhilarasuH, RamakrishnaS, BayBH, SrinivasanDK. Osteogenic differentiation of mesenchymal stem cells with silica-coated gold nanoparticles for bone tissue engineering. Int. J. Mol. Sci.20(20), (2019).
  • Zhang H , CooperLF, ZhangXet al. Titanium nanotubes induce osteogenic differentiation through the FAK/RhoA/YAP cascade. RSC Adv.6(50), 44062–44069 (2016).
  • Chang B , MaC, LiuX. Nanofibers regulate single bone marrow stem cell osteogenesis via FAK/RhoA/YAP1 pathway. ACS Appl. Mater. Interfaces10(39), 33022–33031 (2018).
  • Yun HM , AhnSJ, ParkKRet al. Magnetic nanocomposite scaffolds combined with static magnetic field in the stimulation of osteoblastic differentiation and bone formation. Biomaterials85, 88–98 (2016).
  • Zhang D , LiuD, ZhangJ, FongC, YangM. Gold nanoparticles stimulate differentiation and mineralization of primary osteoblasts through the ERK/MAPK signaling pathway. Mater. Sci. Eng. C.42, 70–77 (2014).
  • Wang Q , ChenB, CaoMet al. Response of MAPK pathway to iron oxide nanoparticles in vitro treatment promotes osteogenic differentiation of hBMSCs. Biomaterials86, 11–20 (2016).
  • Chen Y , ZhengZ, ZhouRet al. Developing a strontium-releasing graphene oxide-/collagen-based organic-inorganic nanobiocomposite for large bone defect regeneration via MAPK signaling pathway. ACS Appl. Mater. Interfaces.11(17), 15986–15997 (2019).
  • Gong W , DongY, WangS, GaoX, ChenX. A novel nano-sized bioactive glass stimulates osteogenesis via the MAPK pathway. RSC Adv.7(23), 13760–13767 (2017).
  • Liu H , PengH, WuYet al. The promotion of bone regeneration by nanofibrous hydroxyapatite/chitosan scaffolds by effects on integrin-BMP/Smad signaling pathway in BMSCs. Biomaterials34(18), 4404–4417 (2013).
  • Wang J , WangM, ChenFet al. Nano-hydroxyapatite coating promotes porous calcium phosphate ceramic-induced osteogenesis via BMP/SMAD signaling pathway. Int. J. Nanomed.14, 7987–8000 (2019).
  • Zhang R , LeeP, LuiVCHet al. Silver nanoparticles promote osteogenesis of mesenchymal stem cells and improve bone fracture healing in osteogenesis mechanism mouse model. Nanomed. Nanotechnol. Biol. Med.11(8), 1949–1959 (2015).
  • Ren X , BischoffD, WeisgerberDWet al. Osteogenesis on nanoparticulate mineralized collagen scaffolds via autogenous activation of the canonical BMP receptor signaling pathway. Biomaterials50(1), 107–114 (2015).
  • Choi SY , SongMS, RyuPD, LamATN, JooS-WW, LeeSY. Gold nanoparticles promote osteogenic differentiation in human adipose-derived mesenchymal stem cells through the Wnt/β-catenin signaling pathway. Int. J. Nanomed.10, 4383–4392 (2015).
  • Zhou J , ZhaoL, LiB, HanY. Nanorod diameter modulated osteogenic activity of hierarchical micropore/nanorod-patterned coatings via a Wnt/β-catenin pathway. Nanomedicine14(5), 1719–1731 (2018).
  • Ardeshirylajimi A , GolchinA, KhojastehA, BandehpourM. Increased osteogenic differentiation potential of MSCs cultured on nanofibrous structure through activation of Wnt/β-catenin signalling by inorganic polyphosphate. Artif. Cells Nanomed. Biotechnol.46(sup3), S943–S949 (2018).
  • Mao L , LiuJ, ZhaoJet al. Effect of micro-nano-hybrid structured hydroxyapatite bioceramics on osteogenic and cementogenic differentiation of human periodontal ligament stem cell via Wnt signaling pathway. Int. J. Nanomed.10, 7031–7044 (2015).
  • Zhang Z , LiZ, ZhangCet al. Biomimetic intrafibrillar mineralized collagen promotes bone regeneration via activation of the Wnt signaling pathway. Int. J. Nanomed.13, 7503–7516 (2018).
  • Abuna RPF , OliveiraFS, LopesHBet al. The Wnt/β-catenin signaling pathway is regulated by titanium with nanotopography to induce osteoblast differentiation. Colloids Surfaces B Biointerfaces184(August), 110513 (2019).
  • McBeath R , PironeDM, NelsonCM, BhadrirajuK, ChenCS. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell6(4), 483–495 (2004).
  • Xiao G , WangD, BensonMD, KarsentyG, FranceschiRT. Role of the α2-integrin in osteoblast-specific gene expression and activation of the Osf2 transcription factor. J. Biol. Chem.273(49), 32988–32994 (1998).
  • Li W , DuzgunA, SumpioBE, BassonMD. Integrin and FAK-mediated MAPK activation is required for cyclic strain mitogenic effects in Caco-2 cells. Am. J. Physiol. Gastrointest. Liver Physiol.280(1), G75–G87 (2001).
  • Keselowsky BG , CollardDM, GarcíaAJ. Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proc. Natl Acad. Sci. USA102(17), 5953–5957 (2005).
  • Greenblatt MB , ShimJ-H, ZouWet al. The p38 MAPK pathway is essential for skeletogenesis and bone homeostasis in mice. J. Clin. Invest.120(7), 2457–2473 (2010).
  • Franceschi RT , XiaoG, JiangD, GopalakrishnanR, YangS, ReithE. Multiple signaling pathways converge on the Cbfa1/Runx2 transcription factor to regulate osteoblast differentiation. Connect. Tissue Res.44(Suppl. 1), 109–116 (2003).
  • Xiao G , JiangD, ThomasPet al. MAPK pathways activate and phosphorylate the osteoblast-specific transcription factor, Cbfa1. J. Biol. Chem.275(6), 4453–4459 (2000).
  • Chen X , WangJ, ChenYet al. Roles of calcium phosphate-mediated integrin expression and MAPK signaling pathways in the osteoblastic differentiation of mesenchymal stem cells. J. Mater. Chem. B.4(13), 2280–2289 (2016).
  • Ge J , LiuK, NiuWet al. Gold and gold-silver alloy nanoparticles enhance the myogenic differentiation of myoblasts through p38 MAPK signaling pathway and promote in vivo skeletal muscle regeneration. Biomaterials175, 19–29 (2018).
  • Xia L , LinK, JiangXet al. Enhanced osteogenesis through nano-structured surface design of macroporous hydroxyapatite bioceramic scaffolds via activation of ERK and p38 MAPK signaling pathways. J. Mater. Chem. B.1(40), 5403–5416 (2013).
  • Lian JB , SteinGS, JavedAet al. Networks and hubs for the transcriptional control of osteoblastogenesis. Rev. Endocr. Metab. Disord.7(1–2), 1–16 (2006).
  • Kang Q , SunMH, ChengHet al. Characterization of the distinct orthotopic bone-forming activity of 14 BMPs using recombinant adenovirus-mediated gene delivery. Gene Ther.11(17), 1312–1320 (2004).
  • Khosla S , WestendorfJJ, OurslerMJ. Building bone to reverse osteoporosis and repair fractures. J. Clin. Invest.118(2), 421–428 (2008).
  • Chen L , ZouX, ZhangR-Xet al. IGF1 potentiates BMP9-induced osteogenic differentiation in mesenchymal stem cells through the enhancement of BMP/Smad signaling. BMB Rep.49(2), 122–127 (2016).
  • Zhang L , WangH, YuDet al. The effects of mouse ovarian granulosa cell function and related gene expression by suppressing BMP/Smad signaling pathway. Animal Cells Syst. (Seoul)22(5), 317–323 (2018).
  • Cao J , WeiY, LianJet al. Notch signaling pathway promotes osteogenic differentiation of mesenchymal stem cells by enhancing BMP9/Smad signaling. Int. J. Mol. Med.40(2), 378–388 (2017).
  • Day TF , GuoX, Garrett-BealL, YangY. Wnt/β-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev. Cell8(5), 739–750 (2005).
  • Liu F , KohlmeierS, WangCY. Wnt signaling and skeletal development. Cell. Signal.20(6), 999–1009 (2008).
  • Kato K , MoritaK, HirataIet al. Enhancement of calcification by osteoblasts cultured on hydroxyapatite surfaces with adsorbed inorganic polyphosphate. In Vitro Cell. Dev. Biol. Anim.54(6), 449–457 (2018).
  • Xia Y , GuoY, YangZet al. Iron oxide nanoparticle-calcium phosphate cement enhanced the osteogenic activities of stem cells through WNT/β-catenin signaling. Mater. Sci. Eng. C.104(September 2018), 109955 (2019).
  • Armstead AL , ArenaCB, LiB. Exploring the potential role of tungsten carbide cobalt (WC-Co) nanoparticle internalization in observed toxicity toward lung epithelial cells in vitro. Toxicol. Appl. Pharmacol.278(1), 1–8 (2014).
  • Napierska D , ThomassenLCJ, RabolliVet al. Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells. Small5(7), 846–853 (2009).
  • Yang H , LiuC, YangD, ZhangH, XiZ. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J. Appl. Toxicol.29(1), 69–78 (2009).
  • Cheng H , ChawlaA, YangYet al. Development of nanomaterials for bone-targeted drug delivery. Drug Discov. Today22(9), 1336–1350 (2017).
  • Liu LZ , DingM, ZhengJZet al. Tungsten carbide-cobalt nanoparticles induce reactive oxygen species, AKT, ERK, AP-1, NF-κB, VEGF, and angiogenesis. Biol. Trace Elem. Res.166(1), 57–65 (2015).
  • Albanese A , TangPS, ChanWCW. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng.14(1), 1–16 (2012).
  • Katz E , WillnerI. Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angew. Chem. Int. Ed. Engl.43(45), 6042–6108 (2004).
  • Feng X , ChenA, ZhangY, WangJ, ShaoL, WeiL. Application of dental nanomaterials: potential toxicity to the central nervous system. Int. J. Nanomed.10, 3547–3565 (2015).
  • Yi H , UrRehman F, ZhaoC, LiuB, HeN. Recent advances in nano scaffolds for bone repair. Bone Res.4(June), 206–216 (2016).
  • Lee C-M , JeongH-J, YunK-Net al. Optical imaging to trace near infrared fluorescent zinc oxide nanoparticles following oral exposure. Int. J. Nanomed.7, 3203–3209 (2012).
  • Sun J , XieG. Tissue distribution of intravenously administrated hydroxyapatite nanoparticles labeled with 125I. J. Nanosci. Nanotechnol.11(12), 10996–11000 (2011).
  • Wang Y , ChenZ, BaTet al. Susceptibility of young and adult rats to the oral toxicity of titanium dioxide nanoparticles. Small9(9–10), 1742–1752 (2013).
  • Murphy CJ , GoleAM, StoneJWet al. Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc. Chem. Res.41(12), 1721–1730 (2008).
  • Chen L , LiuJ, ZhangYet al. The toxicity of silica nanoparticles to the immune system. Nanomedicine13(15), 1939–1962 (2018).
  • Oberdörster G , OberdörsterE, OberdörsterJ. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect.113(7), 823–839 (2005).
  • Padmanabhan J , KyriakidesTR. Nanomaterials, inflammation, and tissue engineering. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.7(3), 355–370 (2015).
  • Yang M , JingL, WangJet al. Macrophages participate in local and systemic inflammation induced by amorphous silica nanoparticles through intratracheal instillation. Int. J. Nanomed.11, 6217–6228 (2016).
  • Chen Q , WangN, ZhuMet al. TiO2 nanoparticles cause mitochondrial dysfunction, activate inflammatory responses, and attenuate phagocytosis in macrophages: a proteomic and metabolomic insight. Redox Biol.15(8), 266–276 (2018).
  • Hamilton RF , BufordM, XiangC, WuN, HolianA. NLRP3 inflammasome activation in murine alveolar macrophages and related lung pathology is associated with MWCNT nickel contamination. Inhal. Toxicol.24(14), 995–1008 (2012).
  • Tsai C-Y , LuS-L, HuC-W, YehC-S, LeeG-B, LeiH-Y. Size-dependent attenuation of TLR9 signaling by gold nanoparticles in macrophages. J. Immunol.188(1), 68–76 (2012).
  • Simard JC , VallieresF, DeLiz R, LavastreV, GirardD. Silver nanoparticles induce degradation of the endoplasmic reticulum stress sensor activating transcription factor-6 Leading to activation of the NLRP-3 Inflammasome. J. Biol. Chem.290(9), 5926–5939 (2015).
  • Hashimoto M , ImazatoS. Cytotoxic and genotoxic characterization of aluminum and silicon oxide nanoparticles in macrophages. Dent. Mater.31(5), 556–564 (2015).
  • Wu B , LiY, NieNet al. Nano genome altas (NGA) of body wide organ responses. Biomaterials205, 38–49 (2019).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.