85
Views
0
CrossRef citations to date
0
Altmetric
Editorial

How Can We Understand The Influence of Nanoparticles on The Coagulation of Blood?

ORCID Icon & ORCID Icon
Pages 1923-1926 | Received 27 Apr 2020, Accepted 29 May 2020, Published online: 17 Jul 2020

References

  • Fröhlich E . Hemocompatibility of inhaled environmental nanoparticles: potential use of in vitro testing. J. Hazard. Mater.336, 158–167 (2017).
  • Niranjan R , ThakurAK. The toxicological mechanisms of environmental soot (black carbon) and carbon black: focus on oxidative stress and inflammatory pathways. Front. Immunol.8(763), 1–20 (2017).
  • Terzano C , DiStefano F, ContiV, GrazianiE, PetroianniA. Air pollution ultrafine particles: toxicity beyond the lung. Eur. Rev. Med. Pharmacol. Sci.14(10), 809–821 (2010).
  • Gibb BC . Plastics are forever. Nat. Chem.11(5), 394–395 (2019).
  • Kögel T , BjorøyØ, TotoB, BienfaitAM, SandenM. Micro- and nanoplastic toxicity on aquatic life: determining factors. Sci. Total Environ.709, 136050 (2020).
  • Quesada-González D , MerkoçiA. Nanoparticle-based lateral flow biosensors. Biosens. Bioelectron.73, 47–63 (2015).
  • Hutter E , MaysingerD. Gold nanoparticles and quantum dots for bioimaging. Microsc. Res. Tech.74(7), 592–604 (2011).
  • Schroeder A , HellerDA, WinslowMMet al. Treating metastatic cancer with nanotechnology. Nat. Rev. Cancer12(1), 39–50 (2012).
  • Geys J , NemmarA, VerbekenEet al. Acute toxicity and prothrombotic effects of quantum dots: impact of surface charge. Environ. Health Perspect.116(12), 1607–1613 (2008).
  • Sacchetti C , MotamedchabokiK, MagriniAet al. Surface polyethylene glycol conformation influences the protein corona of polyethylene glycol-modified single-walled carbon nanotubes: potential implications on biological performance. ACS Nano7(3), 1974–1989 (2013).
  • Sanfins E , AugustssonC, DahlbäckB, LinseS, CedervallT. Size-dependent effects of nanoparticles on enzymes in the blood coagulation cascade. Nano Lett.14(8), 4736–4744 (2014).
  • Palekar RU , JalloukAP, MyersonJW, PanH, WicklineSA. Inhibition of thrombin with PPACK-nanoparticles restores disrupted endothelial barriers and attenuates thrombotic risk in experimental atherosclerosis. Arterioscler. Thromb. Vasc. Biol.36(3), 446–455 (2016).
  • Ilinskaya AN , DobrovolskaiaMA. Nanoparticles and the blood coagulation system. Part II: safety concerns. Nanomedicine (Lond.)8(6), 969–981 (2013).
  • Fröhlich E . Action of nanoparticles on platelet activation and plasmatic coagulation. Curr. Med. Chem.23(5), 408–430 (2016).
  • Jones CF , CampbellRA, BrooksAEet al. Cationic PAMAM dendrimers aggressively initiate blood clot formation. ACS Nano6(11), 9900–9910 (2012).
  • Liu C , YaoW, TianM, WeiJ, SongQ, QiaoW. Mussel-inspired degradable antibacterial polydopamine/silica nanoparticle for rapid hemostasis. Biomaterials179, 83–95 (2018).
  • Shabanova EM , DrozdovAS, FakhardoAF, DudanovIP, KovalchukMS, VinogradovVV. Thrombin@Fe3O4 nanoparticles for use as a hemostatic agent in internal bleeding. Sci. Rep.8(1), 1–10 (2018).
  • Kudela D , SmithSA, May-MasnouAet al. Clotting activity of polyphosphate-functionalized silica nanoparticles. Angew. Chem. Int. Ed. Engl.54(13), 4018–4022 (2015).
  • Szymusiak M , DonovanAJ, SmithSAet al. Colloidal confinement of polyphosphate on gold nanoparticles robustly activates the contact pathway of blood coagulation. Bioconjug. Chem.27(1), 102–109 (2016).
  • Tian Y , ZhaoY, ZhengW, ZhangW, JiangX. Antithrombotic functions of small molecule-capped gold nanoparticles. Nanoscale6(15), 8543–8550 (2014).
  • Breitwieser D , SpirkS, FaslHet al. Design of simultaneous antimicrobial and anticoagulant surfaces based on nanoparticles and polysaccharides. J. Mater. Chem. B.1(15), 2022–2030 (2013).
  • Rangnekar A , ZhangAM, LiSSet al. Increased anticoagulant activity of thrombin-binding DNA aptamers by nanoscale organization on DNA nanostructures. Nanomedicine8(5), 673–681 (2012).
  • Tsatsakis A , StratidakisAK, GoryachayaAVet al. In vitro blood compatibility and in vitro cytotoxicity of amphiphilic poly-N-vinylpyrrolidone nanoparticles. Food Chem. Toxicol.127, 42–52 (2019).
  • Wang F , LiuX, FengL, ZhuQ, YanS, GuoR. Synthesis, characterisation and preliminary investigation of the haemocompatibility of poly(D,L-lactide-co-glycolide)-poly(ethyleneglycol)-poly(D,L-lactide-co-glycolide) copolymer for simvastatin delivery. J. Bioact. Compat. Polym.32(6), 641–653 (2017).
  • Abraham S , SoA, UnsworthLD. Poly(carboxybetaine methacrylamide)-modified nanoparticles: a model system for studying the effect of chain chemistry on film properties, adsorbed protein conformation, and clot formation kinetics. Biomacromolecules12(10), 3567–3580 (2011).
  • Narain R , WangY, AhmedM, LaiBFL, KizhakkedathuJN. Blood components interactions to ionic and nonionic glyconanogels. Biomacromolecules16(9), 2990–2997 (2015).
  • Vogler EA , SiedleckiCA. Contact activation of blood–plasma coagulation. Biomaterials30(10), 1857–1869 (2009).
  • Wang M , SiddiquiG, GustafssonOJRet al. Plasma proteome association and catalytic activity of stealth polymer-grafted iron oxide nanoparticles. Small13(36), 1–11 (2017).
  • Dobrovolskaia MA , NeunBW, ManSet al. Protein corona composition does not accurately predict hematocompatibility of colloidal gold nanoparticles. Nanomedicine10(7), 1453–1463 (2014).
  • Santos C , TurielS, SousaGomes Pet al. Vascular biosafety of commercial hydroxyapatite particles: discrepancy between blood compatibility assays and endothelial cell behavior. J. Nanobiotechnol.16(1), 1–15 (2018).
  • Ekdahl KN , FromellK, MohlinC, TeramuraY, NilssonB. A human whole-blood model to study the activation of innate immunity system triggered by nanoparticles as a demonstrator for toxicity. Sci. Technol. Adv. Mater.20(1), 688–698 (2019).
  • Mohan T , NagarajC, NagyBMet al. Nano- and micropatterned polycaprolactone cellulose composite surfaces with tunable protein adsorption, fibrin clot formation, and endothelial cellular response. Biomacromolecules20(6), 2327–2337 (2019).
  • Roloff A , CarliniAS, CallmannCE, GianneschiNC. Micellar thrombin-binding aptamers: reversible nanoscale anticoagulants. J. Am. Chem. Soc.139(46), 16442–16445 (2017).
  • Jo S , KimI, LeeWet al. Highly sensitive and wide-range nanoplasmonic detection of fibrinogen using erythrocyte membrane-blanketed nanoparticles. Biosens. Bioelectron.135, 216–223 (2019).
  • Chandrawati R , StevensMM. Controlled assembly of peptide-functionalized gold nanoparticles for label-free detection of blood coagulation Factor XIII activity. Chem. Comm.50(41), 5431–5434 (2014).
  • Lin KY , KwongGA, WarrenAD, WoodDK, BhatiaSN. Nanoparticles that sense thrombin activity as synthetic urinary biomarkers of thrombosis. ACS Nano7(10), 9001–9009 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.