146
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Distributions of Intravenous Injected Iodine Nanoparticles in Orthotopic U87 Human Glioma Xenografts Over Time and Tumor Therapy

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2369-2383 | Received 07 May 2020, Accepted 13 Aug 2020, Published online: 25 Sep 2020

References

  • Hartmann M , JansenO, EgelhofT, ForstingM, AlbertF, SartorK. Einfluß des Hirnödems auf das Rezidivwachstum maligner Gliome. Der Radiologe38(11), 948–953 (1998).
  • Yeh RH , YuJC, ChuCHet al. Distinct MR imaging features of triple-negative breast cancer with brain metastasis. J. Neuroimag.25(3), 474–481 (2015).
  • Tarbell NJ , LoefflerJS. Recent trends in the radiotherapy of pediatric gliomas. J. Neurooncol.28(2–3), 233–244 (1996).
  • Hainfeld JF , SlatkinDN, SmilowitzHM. The use of gold nanoparticles to enhance radiotherapy in mice. Phys. Med. Biol.49(18), N309 (2004).
  • Hainfeld JF , DilmanianFA, SlatkinDN, SmilowitzHM. Radiotherapy enhancement with gold nanoparticles. J. Pharmacy Pharmacol.60(8), 977–985 (2008).
  • Sung W , YeS-J, McNamaraALet al. Dependence of gold nanoparticle radiosensitization on cell geometry. Nanoscale9(18), 5843–5853 (2017).
  • Smilowitz HM , MeyersA, RahmanKet al. Intravenously-injected gold nanoparticles (AuNPs) access intracerebral F98 rat gliomas better than AuNPs infused directly into the tumor site by convection enhanced delivery. Int. J. Nanomedicine13, 3937–3948 (2018).
  • Hainfeld JF , RidwanSM, StanishevskiyY, SlatkinDN, SmilowitzHM. Iodine nanoparticles enhance radiotherapy of intracerebral human glioma in mice and increase efficacy of chemotherapy. Sci. Rep.9(1), 1–12 (2019).
  • Hainfeld JF , DilmanianFA, ZhongZ, SlatkinDN, SmilowitzHM. Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma. Phys. Med. Biol.55(11), 3045–3059 (2010).
  • Hainfeld JF , SmilowitzHM, O’ConnorMJ, DilmanianFA, SlatkinDN. Gold nanoparticle imaging and radiotherapy of brain tumors in mice. Nanomedicine (Lond.)8(10), 1601–1609 (2013).
  • Hainfeld JF , RidwanSM, StanishevskiyFY, SmilowitzHM. Iodine nanoparticle radiotherapy of human breast cancer growing in the brains of athymic mice. Sci. Rep. 10, 15627 (2020).
  • Hainfeld JF , RidwanSM, StanishevskiyY, SmilowitzNR, DavisJ, SmilowitzHM. small, long blood half-life iodine nanoparticle for vascular and tumor imaging. Sci Rep.8(1), 1–10 (2018).
  • Bingham B , PatelCG, ShinoharaET, AttiaA. Utilization of hypofractionated radiotherapy in treatment of glioblastoma multiforme in elderly patients not receiving adjuvant chemoradiotherapy: a National Cancer Database Analysis. J. Neurooncol.136(2), 385–394 (2018).
  • Navarria P , PessinaF, FranzeseCet al. Hypofractionated radiation therapy (HFRT) versus conventional fractionated radiation therapy (CRT) for newly diagnosed glioblastoma patients. A propensity score matched analysis. Radiother. Oncol.127(1), 108–113 (2018).
  • Lu VM , KerezoudisP, BrownDA, BurnsTC, Quinones-HinojosaA, ChaichanaKL. Hypofractionated versus standard radiation therapy in combination with temozolomide for glioblastoma in the elderly: a meta-analysis. J. Neurooncol.143(2), 177–185 (2019).
  • Hainfield JF , SmilowitzHM, O’ConnorMJ, DilmanianFA, SlatkinDN. Gold nanoparticle imaging and radiotherapy of brain tumors in mice. Nanomedicine (Lond.)8(10), 1601–1609 (2013).
  • Hendriksen E , SpanP, SchuuringJet al. Angiogenesis, hypoxia and VEGF expression during tumour growth in a human xenograft tumour model. Microvasc. Res.77(2), 96–103 (2009).
  • Dvorak HF . Tumor stroma, tumor blood vessels and antiangiogenesis therapy. Cancer J.21(4), 237–243 (2015).
  • Johnsen KB , BurkhartA, ThomsenLB, AndresenTL, MoosT. Targeting the transferrin receptor for brain drug delivery. Prog. Neurobiol.181, 101665 (2019).
  • Choudhury H , PandeyM, ChinPXet al. Transferrin receptors-targeting nanocarriers for efficient targeted delivery and transcytosis of drugs into the brain tumors: a review of recent advancements and emerging trends. Drug Deliv. Transl. Res.8(5), 1545–1563 (2018).
  • Heggannavar GB , HiremathCG, AchariDD, PangarkarVG, KariduraganavarMY. Development of doxorubicin-loaded magnetic silica–pluronic F-127 nanocarriers conjugated with transferrin for treating glioblastoma across the blood–brain barrier using an in vitro model. ACS Omega3(7), 8017–8026 (2018).
  • Xiong X-B , HuangY, LuW-Let al. Enhanced intracellular delivery and improved antitumor efficacy of doxorubicin by sterically stabilized liposomes modified with a synthetic RGD mimetic. J. Control. Rel.107(2), 262–275 (2005).
  • Zhou Q-H , YouY-Z, WuC, HuangY, OupickýD. Cyclic RGD-targeting of reversibly stabilized DNA nanoparticles enhances cell uptake and transfection in vitro. J. Drug Target.17(5), 364–373 (2009).
  • Zhang P , HuL, YinQ, FengL, LiY. Transferrin-modified c [RGDfK]-paclitaxel loaded hybrid micelle for sequential blood–brain barrier penetration and glioma targeting therapy. Mol. Pharm.9(6), 1590–1598 (2012).
  • Delisser HM , NewmanPJ, AlbeldaSM. Platelet endothelial cell adhesion molecule (CD31). In: Adhesion in leukocyte homing and differentiation. DunonD, MackayCR, ImhofBA ( Eds). Springer, Berlin, Heidelberg, Germany, 37–45 (1993).
  • Hardee ME , ZagzagD. Mechanisms of glioma-associated neovascularization. Am. J. Pathol.181(4), 1126–1141 (2012).
  • Yang C , ZhangZH, LiZJ, YangRC, QianGQ, HanZC. Enhancement of neovascularization with cord blood CD133+ cell-derived endothelial progenitor cell transplantation. Thromb. Haemost.91(06), 1202–1212 (2004).
  • Siddiqui MS , FrançoisM, FenechMF, LeifertWR. Persistent γH2AX: a promising molecular marker of DNA damage and aging. Mutat. Res. Rev. Mutat. Res.766, 1–19 (2015).
  • Azoulay M , ShahJ, PollomE, SoltysSG. New hypofractionation radiation strategies for glioblastoma. Curr. Oncol. Rep.19(9), 58 (2017).
  • Vaubel RA , TianS, RemondeDAet al. Genomic and phenotypic characterization of a broad panel of patient derived xenografts reflects the diversity of glioblastoma. Clin. Cancer Res.26, 1094–1104 (2020).
  • McKelvey KJ , HudsonAL, KumarRPet al. Temporal and special modulation of the tumor and systemic immune response in the murine GL261 glioma model. PLoS ONE15, e0226444 (2020).
  • Kunjachan S , KotbS, PolaRet al. Selective priming of tumor blood vessels by radiation therapy enhances nanodrug delivery. Sci. Rep.9(1), 1–14 (2019).
  • Ashton JR , CastleKD, QiY, KirschDG, WestJL, BadeaCT. Dual-energy CT imaging of tumor liposome delivery after gold nanoparticle-augmented radiation therapy. Theranostics8(7), 1782 (2018).
  • Liu Y , NagataK, MasunagaS-Iet al. γ-ray irradiation enhanced boron-10 compound accumulation in murine tumors. J. Rad. Res.50(6), 553–557 (2009).
  • Appelbe OK , ZhangQ, PelizzariCA, WeichselbaumRR, KronSJ. Image-guided radiotherapy targets macromolecules through altering the tumor microenvironment. Mol. Pharm.13(10), 3457–3467 (2016).
  • Badea C , GhaghadaK, HolbrookMet al. A spectral CT study on iodine augmentation of radiation therapy and its potential for combination with chemotherapy. Presented at: Medical Imaging 2020: Biomedical Applications in Molecular, Structural and Functional Imaging, TX, USA, 113171N (2020).
  • Nivet A , SchliengerM, ClavèreP, HuguetF. [Effects of high-dose irradiation on vascularization: physiopathology and clinical consequences]. Cancer Radiother.23(2), 161–167 (2019).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.