215
Views
1
CrossRef citations to date
0
Altmetric
Review

Meniscal Tissue Repair with Nanofibers: Future Perspectives

ORCID Icon, ORCID Icon & ORCID Icon
Pages 2517-2538 | Received 28 Apr 2020, Accepted 12 Aug 2020, Published online: 25 Sep 2020

References

  • Ghosh P , TaylorT. The knee joint meniscus: a fibrocartilage of some distinction. Clin. Orthop. Relat. Res.224, 52–63 (1987).
  • Makris EA , HadidiP, AthanasiouKA. The knee meniscus: structure-function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials32(30), 7411–7431 (2011).
  • Arnoczky SP , WarrenRF. The microvasculature of the meniscus and its response to injury. An experimental study in the dog. Am. J. Sports Med.11(3), 131–141 (1983).
  • Arnoczky SP , WarrenRF. Microvasculature of the human meniscus. Am. J. Sports Med.10(2), 90–95 (1982).
  • Nakata K , ShinoK, HamadaMet al. Human meniscus cell: characterization of the primary culture and use for tissue engineering. Clin. Orthop. Relat. Res. (Suppl. 391), S208–218 (2001).
  • Declercq HA , ForsythRG, VerbruggenA, VerdonkR, CornelissenMJ, VerdonkPC. CD34 and SMA expression of superficial zone cells in the normal and pathological human meniscus. J. Orthop. Res.30(5), 800–808 (2012).
  • Verdonk PC , ForsythRG, WangJet al. Characterisation of human knee meniscus cell phenotype. Osteoarthr. Cartil.13(7), 548–560 (2005).
  • Grogan SP , PauliC, LotzMK, D’LimaDD. Relevance of meniscal cell regional phenotype to tissue engineering. Connect. Tissue Res.58(3–4), 259–270 (2017).
  • Pauli C , GroganSP, PatilSet al. Macroscopic and histopathologic analysis of human knee menisci in aging and osteoarthritis. Osteoarthr. Cartil.19(9), 1132–1141 (2011).
  • Scotti C , HirschmannMT, AntinolfiP, MartinI, PerettiGM. Meniscus repair and regeneration: review on current methods and research potential. Eur. Cell. Mater.26, 150–170 (2013).
  • Brodsky B , PersikovAV. Molecular structure of the collagen triple helix. Adv. Protein Chem.70, 301–339 (2005).
  • Petersen W , TillmannB. Collagenous fibril texture of the human knee joint menisci. Anat. Embryol.197, 317–324 (1998).
  • Bylski-Austrow DI , CiarelliMJ, KaynerDC, MatthewsLS, GoldsteinSA. Displacements of the menisci under joint load: an in vitro study in human knees. J. Biomech.27(4), 421–431 (1994).
  • Jones RS , KeeneGC, LearmonthDJet al. Direct measurement of hoop strains in the intact and torn human medial meniscus. Clin. Biomech. (Bristol, Avon)11(5), 295–300 (1996).
  • Sweigart MA , ZhuCF, BurtDMet al. Intraspecies and interspecies comparison of the compressive properties of the medial meniscus. Ann. Biomed. Eng.32(11), 1569–1579 (2004).
  • Fithian DC , KellyMA, MowVC. Material properties and structure-function relationships in the menisci. Clin. Orthop. Relat. Res.252, 19–31 (1990).
  • Lechner K , HullML, HowellSM. Is the circumferential tensile modulus within a human medial meniscus affected by the test sample location and cross-sectional area?J. Orthop. Res.18(6), 945–951 (2000).
  • Tissakht M , AhmedAM. Tensile stress-strain characteristics of the human meniscal material. J. Biomech.28(4), 411–422 (1995).
  • Chia HN , HullML. Compressive moduli of the human medial meniscus in the axial and radial directions at equilibrium and at a physiological strain rate. J. Orthop. Res.26(7), 951–956 (2008).
  • Moyer JT , AbrahamAC, HautDonahue TL. Nanoindentation of human meniscal surfaces. J. Biomech.45(13), 2230–2235 (2012).
  • Sanchez-Adams J , WiluszRE, GuilakF. Atomic force microscopy reveals regional variations in the micromechanical properties of the pericellular and extracellular matrices of the meniscus. J. Orthop. Res.31(8), 1218–1225 (2013).
  • Kwok J , GroganS, MeckesB, ArceF, LalR, D’LimaD. Atomic force microscopy reveals age-dependent changes in nanomechanical properties of the extracellular matrix of native human menisci: implications for joint degeneration and osteoarthritis. Nanomedicine10(8), 1777–1785 (2014).
  • Garrett WE Jr , SwiontkowskiMF, WeinsteinJNet al. American Board of Orthopaedic Surgery Practice of the Orthopaedic Surgeon: Part-II, certification examination case mix. J. Bone Joint Surg. Am.88(3), 660–667 (2006).
  • Salata MJ , GibbsAE, SekiyaJK. A systematic review of clinical outcomes in patients undergoing meniscectomy. Am. J. Sports Med.38(9), 1907–1916 (2010).
  • Fetzer GB , SpindlerKP, AmendolaAet al. Potential market for new meniscus repair strategies: evaluation of the MOON cohort. J. Knee Surg.22(3), 180–186 (2009).
  • Ford GM , HegmannKT, WhiteGLJr, HolmesEB. Associations of body mass index with meniscal tears. Am. J. Prevent. Med.28(4), 364–368 (2005).
  • Baker BE , PeckhamAC, PupparoF, SanbornJC. Review of meniscal injury and associated sports. Am. J. Sports Med.13(1), 1–4 (1985).
  • Hede A , JensenDB, BlymeP, Sonne-HolmS. Epidemiology of meniscal lesions in the knee. 1,215 open operations in Copenhagen 1982–84. Acta Orthop. Scand.61(5), 435–437 (1990).
  • Englund M , GuermaziA, GaleDet al. Incidental meniscal findings on knee MRI in middle-aged and elderly persons. N. Engl. J. Med.359(11), 1108–1115 (2008).
  • Bhattacharyya T , GaleD, DewirePet al. The clinical importance of meniscal tears demonstrated by magnetic resonance imaging in osteoarthritis of the knee. J. Bone Joint Surg. Am.85-A(1), 4–9 (2003).
  • Roemer FW , KwohCK, HannonMJet al. What comes first? Multitissue involvement leading to radiographic osteoarthritis: magnetic resonance imaging-based trajectory analysis over four years in the osteoarthritis initiative. Arthritis Rheumatol.67(8), 2085–2096 (2015).
  • Fillingham YA , RibohJC, EricksonBJ, BachBRJr, YankeAB. Inside-out versus all-inside repair of isolated meniscal tears: an updated systematic review. Am. J. Sports Med.45(1), 234–242 (2017).
  • Myers P , TudorF. Meniscal allograft transplantation: how should we be doing it? A systematic review. Arthroscopy31(5), 911–925 (2015).
  • Rosso F , BisicchiaS, BonasiaDE, AmendolaA. Meniscal allograft transplantation: a systematic review. Am. J. Sports Med.43(4), 998–1007 (2015).
  • Goble EM , VerdonkR, KohnD. Arthroscopic and open surgical techniques for meniscus replacement--meniscal allograft transplantation and tendon autograft transplantation. Scand. J. Med. Sci. Sports9(3), 168–176 (1999).
  • Walsh CJ , GoodmanD, CaplanAI, GoldbergVM. Meniscus regeneration in a rabbit partial meniscectomy model. Tissue Eng.5(4), 327–337 (1999).
  • Shirakura K , NiijimaM, KobunaY, KizukiS. Free synovium promotes meniscal healing. Synovium, muscle and synthetic mesh compared in dogs. Acta Orthop. Scand.68(1), 51–54 (1997).
  • Oda S , OtsukiS, KurokawaY, HoshiyamaY, NakajimaM, NeoM. A new method for meniscus repair using type I collagen scaffold and infrapatellar fat pad. J. Biomater. Appl.29(10), 1439–1448 (2015).
  • Cook JL , FoxDB, MalaviyaPet al. Long-term outcome for large meniscal defects treated with small intestinal submucosa in a dog model. Am. J. Sports Med.34(1), 32–42 (2006).
  • Stapleton TW , IngramJ, FisherJ, InghamE. Investigation of the regenerative capacity of an acellular porcine medial meniscus for tissue engineering applications. Tissue Eng. Part A17(1–2), 231–242 (2011).
  • Bruns J , KahrsJ, KampenJ, BehrensP, PlitzW. Autologous perichondral tissue for meniscal replacement. J. Bone Joint Surg. Br.80(5), 918–923 (1998).
  • Chang A , MoisioK, ChmielJSet al. Subregional effects of meniscal tears on cartilage loss over 2 years in knee osteoarthritis. Ann. Rheum. Dis.70(1), 74–49 (2011).
  • Englund M , GuermaziA, RoemerFWet al. Meniscal pathology on MRI increases the risk for both incident and enlarging subchondral bone marrow lesions of the knee: the MOST Study. Ann. Rheum. Dis.69, 1796–1802 (2010).
  • Roos H , LaurenM, AdalberthT, RoosEM, JonssonK, LohmanderLS. Knee osteoarthritis after meniscectomy: prevalence of radiographic changes after twenty-one years, compared with matched controls. Arthritis Rheum.41(4), 687–693 (1998).
  • Langer R , VacantiJ. Tissue engineering. Science260(5110), 920–926 (1993).
  • Rodkey WG , DehavenKE, MontgomeryWH3rdet al. Comparison of the collagen meniscus implant with partial meniscectomy. A prospective randomized trial. J. Bone Joint Surg. Am.90(7), 1413–1426 (2008).
  • Aufderheide AC , AthanasiouKA. Assessment of a bovine co-culture, scaffold-free method for growing meniscus-shaped constructs. Tissue Eng.13(9), 2195–2205 (2007).
  • Zhang ZZ , WangSJ, ZhangJYet al. 3D-printed poly(epsilon-caprolactone) scaffold augmented with mesenchymal stem cells for total meniscal substitution: a 12- and 24-week animal study in a rabbit model. Am. J. Sports Med.45(7), 1497–1511 (2017).
  • Freymann U , EndresM, NeumannK, ScholmanHJ, MorawietzL, KapsC. Expanded human meniscus-derived cells in 3-D polymer-hyaluronan scaffolds for meniscus repair. Acta Biomater.8(2), 677–685 (2012).
  • Klompmaker J , JansenHW, VethRP, DeGroot JH, NijenhuisAJ, PenningsAJ. Porous polymer implant for repair of meniscal lesions: a preliminary study in dogs. Biomaterials12(9), 810–816 (1991).
  • Kobayashi M , ChangYS, OkaM. A two year in vivo study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus. Biomaterials26(16), 3243–3248 (2005).
  • Ballyns JJ , GleghornJP, NiebrzydowskiVet al. Image-guided tissue engineering of anatomically shaped implants via MRI and micro-CT using injection molding. Tissue Eng. Part A14(7), 1195–1202 (2008).
  • Puetzer JL , KooE, BonassarLJ. Induction of fiber alignment and mechanical anisotropy in tissue engineered menisci with mechanical anchoring. J. Biomech.48(8), 1436–1443 (2015).
  • Li WJ , LaurencinCT, CatersonEJ, TuanRS, KoFK. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J. Biomed. Mater. Res.60(4), 613–621 (2002).
  • Baek J , SovaniS, ChoiW, JinS, GroganSP, D’LimaDD. Meniscal tissue engineering using aligned collagen fibrous scaffolds: comparison of different human cell sources. Tissue Eng. Part A24(1–2), 81–93 (2018).
  • Baek J , SovaniS, GlembotskiNEet al. Repair of avascular meniscus tears with electrospun collagen scaffolds seeded with human cells. Tissue Eng. Part A22(5–6), 436–448 (2016).
  • Li WJ , CooperJAJr, MauckRL, TuanRS. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications. Acta Biomater.2(4), 377–385 (2006).
  • Song KH , HeoS-J, PeredoAP, DavidsonMD, MauckRL, BurdickJA. Influence of fiber stiffness on meniscal cell migration into dense fibrous networks. Adv. Healthc. Mater.9(8), e1901228 (2019).
  • Selaru A , DragusinDM, OlaretEet al. Fabrication and biocompatibility evaluation of nanodiamonds-gelatin electrospun materials designed for prospective tissue regeneration applications. Materials (Basel)12(18), 2933 (2019).
  • Baek J , ChenX, SovaniS, JinS, GroganSP, D’LimaDD. Meniscus tissue engineering using a novel combination of electrospun scaffolds and human meniscus cells embedded within an extracellular matrix hydrogel. J. Orthop. Res.33(4), 572–583 (2015).
  • Li WJ , MauckRL, CooperJA, YuanX, TuanRS. Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering. J. Biomech.40(8), 1686–1693 (2007).
  • Baker BM , MauckRL. The effect of nanofiber alignment on the maturation of engineered meniscus constructs. Biomaterials28(11), 1967–1977 (2007).
  • Alexander FA Jr , JohnsonL, WilliamsK, PackerK. A parameter study for 3D-printing organized nanofibrous collagen scaffolds using direct-write electrospinning. Materials (Basel)12(24), (2019).
  • Wortmann M , FreseN, SabantinaLet al. New polymers for needleless electrospinning from low-toxic solvents. Nanomaterials (Basel)9(1), 52 (2019).
  • Magaz A , RobertsAD, FarajiSet al. Porous, aligned, and biomimetic fibers of regenerated silk fibroin produced by solution blow spinning. Biomacromolecules19(12), 4542–4553 (2018).
  • Polk S , SoriN, ThayerNet al. Pneumatospinning of collagen microfibers from benign solvents. Biofabrication10(4), 045004 (2018).
  • Madurga R , Ganan-CalvoAM, PlazaGR, GuineaGV, ElicesM, Perez-RigueiroJ. Production of high performance bioinspired silk fibers by straining flow spinning. Biomacromolecules18(4), 1127–1133 (2017).
  • Hall Barrientos IJ , PaladinoE, SzaboPet al. Electrospun collagen-based nanofibres: a sustainable material for improved antibiotic utilisation in tissue engineering applications. Int. J. Pharm.531(1), 67–79 (2017).
  • Li Y , ChenM, ZhouWet al. Cell-free 3D wet-electrospun PCL/silk fibroin/Sr(2+) scaffold promotes successful total meniscus regeneration in a rabbit model. Acta Biomater.113, 196–209 (2020).
  • Gao S , ChenM, WangPet al. An electrospun fiber reinforced scaffold promotes total meniscus regeneration in rabbit meniscectomy model. Acta Biomater.73, 127–140 (2018).
  • Baker BM , GeeAO, MetterRBet al. The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers. Biomaterials29(15), 2348–2358 (2008).
  • Loscertales IG , BarreroA, GuerreroI, CortijoR, MarquezM, Gañán-CalvoAM. Micro/nano encapsulation via electrified coaxial liquid jets. Science295(5560), 1695 (2002).
  • Sun Z , ZussmanE, YarinAL, WendorffJH, GreinerA. Compound core–shell polymer nanofibers by co-electrospinning. Adv. Mater.15(22), 1929–1932 (2003).
  • Yang Y , LiX, QiM, ZhouS, WengJ. Release pattern and structural integrity of lysozyme encapsulated in core–sheath structured poly(dl-lactide) ultrafine fibers prepared by emulsion electrospinning. Eur. J. Pharm. Biopharm.69(1), 106–116 (2008).
  • Yang Y , XiaT, ZhiWet al. Promotion of skin regeneration in diabetic rats by electrospun core–sheath fibers loaded with basic fibroblast growth factor. Biomaterials32(18), 4243–4254 (2011).
  • Kayaci F , Ozgit-AkgunC, DonmezI, BiyikliN, UyarT. Polymer–inorganic core–shell nanofibers by electrospinning and atomic layer deposition: flexible nylon–ZnO core–shell nanofiber mats and their photocatalytic activity. ACS Appl. Mater. Interfaces4(11), 6185–6194 (2012).
  • Peng Q , SunX-Y, SpagnolaJC, HydeGK, SpontakRJ, ParsonsGN. Atomic layer deposition on electrospun polymer fibers as a direct route to Al2O3 microtubes with precise wall thickness control. Nano Lett.7(3), 719–722 (2007).
  • Li Z , HuangH, WangC. Electrostatic forces inducepoly(vinyl alcohol)-protected copper nanoparticles toform copper/poly(vinyl alcohol) nanocables via electro-spinning. Macromol. Rapid Commun.27, 152–155 (2006).
  • Pant HR , RisalP, ParkCH, TijingLD, JeongYJ, KimCS. Core–shell structured electrospun biomimetic composite nanofibers of calcium lactate/nylon-6 for tissue engineering. Chem. Eng. J.221(Suppl. C), 90–98 (2013).
  • Fakhrali A , EbadiSV, GharehaghajiAA. Production of core–sheath nanofiber yarn using two opposite asymmetric nozzles. Fiber. Polym.15(12), 2535–2540 (2014).
  • Lee BS , JeonSY, ParkH, LeeG, YangHS, YuWR. New electrospinning nozzle to reduce jet instability and its application to manufacture of multi-layered nanofibers. Sci. Rep.4, 6758 (2014).
  • Liu J , ShenZH, LeeSH, MarquezM, MchughMA. Electrospinning in compressed carbon dioxide: hollow or open-cell fiber formation with a single nozzle configuration. J. Supercrit. Fluids53(1–3), 142–150 (2010).
  • O’brien FJ . Biomaterials & scaffolds for tissue engineering. Mater. Today14(3), 88–95 (2011).
  • Baek J , LotzMK, D’LimaDD. Core–shell nanofibrous scaffolds for repair of meniscus tears. Tissue Eng. Part A25(23–24), 1577–1590 (2019).
  • Chen R , HuangC, KeQ, HeC, WangH, MoX. Preparation and characterization of coaxial electrospun thermoplastic polyurethane/collagen compound nanofibers for tissue engineering applications. Colloid. Surface. B Biointerfaces79(2), 315–325 (2010).
  • Zhang YZ , VenugopalJ, HuangZM, LimCT, RamakrishnaS. Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts. Biomacromolecules6(5), 2583–2589 (2005).
  • Lee KI , OlmerM, BaekJ, D’LimaDD, LotzMK. Platelet-derived growth factor-coated decellularized meniscus scaffold for integrative healing of meniscus tears. Acta Biomater.76, 126–134 (2018).
  • Nie H , SohBW, FuY-C, WangC-H. Three-dimensional fibrous PLGA/HAp composite scaffold for BMP-2 delivery. Biotechnol. Bioeng.99(1), 223–234 (2008).
  • Bölgen N , Vargelİ, KorkusuzP, MenceloğluYZ, PişkinE. In vivo performance of antibiotic embedded electrospun PCL membranes for prevention of abdominal adhesions. J. Biomed. Mater. Res. B Appl. Biomater.81B(2), 530–543 (2007).
  • Kim HS , YooHS. MMPs-responsive release of DNA from electrospun nanofibrous matrix for local gene therapy: In vitro and in vivo evaluation. J. Control. Rel.145(3), 264–271 (2010).
  • Li X , ZhangQ, LuoZ, YanS, YouR. Biofunctionalized silk fibroin nanofibers for directional and long neurite outgrowth. Biointerphases14(6), 061001 (2019).
  • Casanova MR , ReisRL, MartinsA, NevesNM. Fibronectin bound to a fibrous substrate has chondrogenic-inductive properties. Biomacromolecules doi: 10.1021/acs.biomac.9b01546 (2020).
  • Guan R , SunX-L, HouS, WuP, ChaikofEL. A glycopolymer chaperone for fibroblast growth factor-2. Bioconjug. Chem.15(1), 145–151 (2004).
  • Sun B , ChenB, ZhaoYet al. Crosslinking heparin to collagen scaffolds for the delivery of human platelet-derived growth factor. J. Biomed. Mater. Res. B Appl. Biomater.91B(1), 366–372 (2009).
  • Singh S , WuBM, DunnJCY. Enhancing angiogenesis alleviates hypoxia and improves engraftment of enteric cells in polycaprolactone scaffolds. J. Tissue Eng. Regen. Med.7(12), 925–933 (2013).
  • Singh S , WuBM, DunnJCY. The enhancement of VEGF-mediated angiogenesis by polycaprolactone scaffolds with surface cross-linked heparin. Biomaterials32(8), 2059–2069 (2011).
  • Leong NL , ArshiA, KabirNet al. In vitro and in vivo evaluation of heparin mediated growth factor release from tissue-engineered constructs for anterior cruciate ligament reconstruction. J. Orthop. Res.33(2), 229–236 (2015).
  • Lee J , YooJJ, AtalaA, LeeSJ. The effect of controlled release of PDGF-BB from heparin-conjugated electrospun PCL/gelatin scaffolds on cellular bioactivity and infiltration. Biomaterials33(28), 6709–6720 (2012).
  • Lee J , YooJJ, AtalaA, LeeSJ. Controlled heparin conjugation on electrospun poly(ε-caprolactone)/gelatin fibers for morphology-dependent protein delivery and enhanced cellular affinity. Acta Biomater.8(7), 2549–2558 (2012).
  • Qu F , HollowayJL, EsterhaiJL, BurdickJA, MauckRL. Programmed biomolecule delivery to enable and direct cell migration for connective tissue repair. Nat. Commun.8(1), 1780 (2017).
  • Shimomura K , BeanAC, LinH, NakamuraN, TuanRS. In vitro repair of meniscal radial tear using aligned electrospun nanofibrous scaffold. Tissue Eng. Part A21(13–14), 2066–2075 (2015).
  • Ren X , HanY, WangJet al. An aligned porous electrospun fibrous membrane with controlled drug delivery – an efficient strategy to accelerate diabetic wound healing with improved angiogenesis. Acta Biomater.70, 140–153 (2018).
  • Ahmed MK , MenazeaAA, AbdelghanyAM. Blend biopolymeric nanofibrous scaffolds of cellulose acetate/epsilon-polycaprolactone containing metallic nanoparticles prepared by laser ablation for wound disinfection applications. Int. J. Biol. Macromol.155, 636–644 (2020).
  • Xu X , YangL, XuXet al. Ultrafine medicated fibers electrospun from W/O emulsions. J. Control. Rel.108(1), 33–42 (2005).
  • Kowalczyk T , NowickaA, ElbaumD, KowalewskiTA. Electrospinning of bovine serum albumin. Optimization and the use for production of biosensors. Biomacromolecules9(7), 2087–2090 (2008).
  • Zeng J , AignerA, CzubaykoF, KisselT, WendorffJH, GreinerA. Poly(vinyl alcohol) nanofibers by electrospinning as a protein delivery system and the retardation of enzyme release by additional polymer coatings. Biomacromolecules6(3), 1484–1488 (2005).
  • Yang Y , LiX, CuiW, ZhouS, TanR, WangC. Structural stability and release profiles of proteins from core–shell poly(DL-lactide) ultrafine fibers prepared by emulsion electrospinning. J. Biomed. Mater. Res. A86A(2), 374–385 (2008).
  • Li Y , JiangH, ZhuK. Encapsulation and controlled release of lysozyme from electrospun poly(ε-caprolactone)/poly(ethylene glycol) non-woven membranes by formation of lysozyme–oleate complexes. J. Mater. Sci. Mater. Med.19(2), 827–832 (2008).
  • Li C , VepariC, JinH-J, KimHJ, KaplanDL. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials27(16), 3115–3124 (2006).
  • Schneider A , WangXY, KaplanDL, GarlickJA, EglesC. Biofunctionalized electrospun silk mats as a topical bioactive dressing for accelerated wound healing. Acta Biomater.5(7), 2570–2578 (2009).
  • Luu YK , KimK, HsiaoBS, ChuB, HadjiargyrouM. Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers. J. Control. Release89(2), 341–353 (2003).
  • Nie H , HoML, WangCK, WangCH, FuYC. BMP-2 plasmid loaded PLGA/HAp composite scaffolds for treatment of bone defects in nude mice. Biomaterials30(5), 892–901 (2009).
  • Baek J , LeeE, LotzMK, D’LimaDD. Bioactive proteins delivery through core–shell nanofibers for meniscal tissue regeneration. Nanomedicine23, 102090 (2020).
  • Hadisi Z , FarokhiM, Bakhsheshi-RadHRet al. Hyaluronic acid (HA)-based silk fibroin/zinc oxide core–shell electrospun dressing for burn wound management. Macromol. Biosci.20(4), e1900328 (2020).
  • Xu R , ZhaoH, MuhammadH, DongM, BesenbacherF, ChenM. Dual-delivery of FGF-2/CTGF from silk fibroin/PLCL-PEO coaxial fibers enhances MSC proliferation and fibrogenesis. Sci. Rep.7(1), 8509 (2017).
  • Man Z , YinL, ShaoZet al. The effects of co-delivery of BMSC-affinity peptide and rhTGF-β1 from coaxial electrospun scaffolds on chondrogenic differentiation. Biomaterials35(19), 5250–5260 (2014).
  • Pham QP , SharmaU, MikosAG. Electrospun poly(ε-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration. Biomacromolecules7(10), 2796–2805 (2006).
  • Soliman S , PagliariS, RinaldiAet al. Multiscale three-dimensional scaffolds for soft tissue engineering via multimodal electrospinning. Acta Biomater.6(4), 1227–1237 (2010).
  • Kidoaki S , KwonIK, MatsudaT. Mesoscopic spatial designs of nano- and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques. Biomaterials26(1), 37–46 (2005).
  • Fisher MB , HenningEA, SöegaardN, BostromM, EsterhaiJL, MauckRL. Engineering meniscus structure and function via multi-layered mesenchymal stem cell-seeded nanofibrous scaffolds. J. Biomech.48(8), 1412–1419 (2015).
  • Bahcecioglu G , BuyuksungurA, KiziltayA, HasirciN, HasirciV. Construction and in vitro testing of a multilayered, tissue-engineered meniscus. J. Bioact. Compat. Pol.29(3), 235–253 (2014).
  • Anitha R , VaikkathD, ShenoySJ, NairPD. Tissue-engineered islet-like cell clusters generated from adipose tissue-derived stem cells on three-dimensional electrospun scaffolds can reverse diabetes in an experimental rat model and the role of porosity of scaffolds on cluster differentiation. J. Biomed. Mater. Res. A108(3), 749–759 (2020).
  • Sooriyaarachchi D , MinièreHJ, MaharubinS, TanGZ. Hybrid additive microfabrication scaffold incorporated with highly aligned nanofibers for musculoskeletal tissues. Tissue Eng. Regen. Med.16(1), 29–38 (2018).
  • López-Calzada G , Hernandez-MartínezAR, Cruz-SotoMet al. Development of meniscus substitutes using a mixture of biocompatible polymers and extra cellular matrix components by electrospinning. Mater. Sci. Eng. C61, 893–905 (2016).
  • Martinek V , UeblackerP, BraunKet al. Second generation of meniscus transplantation: in-vivo study with tissue engineered meniscus replacement. Arch. Orthop. Trauma Surg.126(4), 228–234 (2006).
  • Kang SW , SonSM, LeeJSet al. Regeneration of whole meniscus using meniscal cells and polymer scaffolds in a rabbit total meniscectomy model. J. Biomed. Mater. Res. A78(3), 659–671 (2006).
  • Grogan SP , ChungPH, SomanPet al. Digital micromirror device projection printing system for meniscus tissue engineering. Acta Biomater.9(7), 7218–7226 (2013).
  • Yoo JJ , BicharaDA, ZhaoX, RandolphMA, GillTJ. Implant-assisted meniscal repair in vivo using a chondrocyte-seeded flexible PLGA scaffold. J. Biomed. Mater. Res. A99(1), 102–108 (2011).
  • Kwak HS , NamJ, LeeJH, KimHJ, YooJJ. Meniscal repair in vivo using human chondrocyte-seeded PLGA mesh scaffold pretreated with platelet-rich plasma. J. Tissue Eng. Regen. Med.11(2), 471–480 (2017).
  • Chew E , PrakashR, KhanW. Mesenchymal stem cells in human meniscal regeneration: a systematic review. Ann. Med. Surg. (Lond.)24, 3–7 (2017).
  • Pak J , LeeJH, LeeSH. Regenerative repair of damaged meniscus with autologous adipose tissue-derived stem cells. Biomed. Res. Int.2014, 436029 (2014).
  • Sasaki H , RothrauffBB, AlexanderPGet al. In vitro repair of meniscal radial tear with hydrogels seeded with adipose stem cells and TGF-beta3. Am. J. Sports Med.46(10), 2402–2413 (2018).
  • Rothrauff BB , SasakiH, KiharaSet al. Point-of-care procedure for enhancement of meniscal healing in a goat model utilizing infrapatellar fat pad-derived stromal vascular fraction cells seeded in photocrosslinkable hydrogel. Am. J. Sports Med.47(14), 3396–3405 (2019).
  • Sekiya I , KogaH, OtabeKet al. Additional use of synovial mesenchymal stem cell transplantation following surgical repair of a complex degenerative tear of the medial meniscus of the knee: a case report. Cell Transplant.28(11), 1445–1454 (2019).
  • Horie M , SekiyaI, MunetaTet al. Intra-articular Injected synovial stem cells differentiate into meniscal cells directly and promote meniscal regeneration without mobilization to distant organs in rat massive meniscal defect. Stem Cells27(4), 878–887 (2009).
  • Kondo S , MunetaT, NakagawaYet al. Transplantation of autologous synovial mesenchymal stem cells promotes meniscus regeneration in aged primates. J. Orthop. Res.35(6), 1274–1282 (2017).
  • Seol D , ZhouC, BrouilletteMJet al. Characteristics of meniscus progenitor cells migrated from injured meniscus. J. Orthop. Res.35(9), 1966–1972 (2017).
  • Jayasuriya CT , Twomey-KozakJ, NewberryJet al. Human cartilage-derived progenitors resist terminal differentiation and require CXCR4 activation to successfully bridge meniscus tissue tears. Stem Cells37(1), 102–114 (2019).
  • Liang Y , IdreesE, SzojkaARAet al. Chondrogenic differentiation of synovial fluid mesenchymal stem cells on human meniscus-derived decellularized matrix requires exogenous growth factors. Acta Biomater.80, 131–143 (2018).
  • De Sousa EB , CasadoPL, MouraNeto V, DuarteME, AguiarDP. Synovial fluid and synovial membrane mesenchymal stem cells: latest discoveries and therapeutic perspectives. Stem Cell Res. Ther.5(5), 112 (2014).
  • Huang H , XuH, ZhaoJ. A novel approach for meniscal regeneration using kartogenin-treated autologous tendon graft. Am. J. Sports Med.45(14), 3289–3297 (2017).
  • Koh RH , JinY, KangBJ, HwangNS. Chondrogenically primed tonsil-derived mesenchymal stem cells encapsulated in riboflavin-induced photocrosslinking collagen-hyaluronic acid hydrogel for meniscus tissue repairs. Acta Biomater.53, 318–328 (2017).
  • Baker BM , NathanAS, HuffmanGR, MauckRL. Tissue engineering with meniscus cells derived from surgical debris. Osteoarthr. Cartil.17(3), 336–345 (2009).
  • Zellner J , PattappaG, KochMet al. Autologous mesenchymal stem cells or meniscal cells: what is the best cell source for regenerative meniscus treatment in an early osteoarthritis situation? Stem Cell Res. Ther. 8(1), 225 (2017).
  • Pangborn CA , AthanasiouKA. Effects of growth factors on meniscal fibrochondrocytes. Tissue Eng.11(7–8), 1141–1148 (2005).
  • Grogan SP , DuffySF, PauliC, LotzMK, D’LimaDD. Gene expression profiles of the meniscus avascular phenotype: a guide for meniscus tissue engineering. J. Orthop. Res.36(7), 1947–1958 (2018).
  • Whitehouse MR , HowellsNR, ParryMCet al. Repair of torn avascular meniscal cartilage using undifferentiated autologous mesenchymal stem cells: from in vitro optimization to a first-in-human study. Stem Cells Transl. Med.6(4), 1237–1248 (2017).
  • Vangsness CT Jr , FarrJ2nd, BoydJ, DellaeroDT, MillsCR, Leroux-WilliamsM. Adult human mesenchymal stem cells delivered via intra-articular injection to the knee following partial medial meniscectomy: a randomized, double-blind, controlled study. J. Bone Joint Surg. Am.96(2), 90–98 (2014).
  • Murphy JM , FinkDJ, HunzikerEB, BarryFP. Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum.48(12), 3464–3474 (2003).
  • Desando G , GiavaresiG, CavalloCet al. Autologous bone marrow concentrate in a sheep model of osteoarthritis: new perspectives for cartilage and meniscus repair. Tissue Eng. C Methods22(6), 608–619 (2016).
  • Zuk PA , ZhuM, MizunoHet al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng.7(2), 211–228 (2001).
  • Erickson GR , GimbleJM, FranklinDM, RiceHE, AwadH, GuilakF. Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo. Biochem. Biophys. Res. Commun.290(2), 763–769 (2002).
  • Ra JC , ShinIS, KimSHet al. Safety of intravenous infusion of human adipose tissue-derived mesenchymal stem cells in animals and humans. Stem Cells Dev.20(8), 1297–1308 (2011).
  • Kern S , EichlerH, StoeveJ, KluterH, BiebackK. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells24(5), 1294–1301 (2006).
  • Zhu Y , LiuT, SongK, FanX, MaX, CuiZ. Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochem. Funct.26(6), 664–675 (2008).
  • Chen HT , LeeMJ, ChenCHet al. Proliferation and differentiation potential of human adipose-derived mesenchymal stem cells isolated from elderly patients with osteoporotic fractures. J. Cell. Mol. Med.16(3), 582–593 (2012).
  • Ruiz-Iban MA , Diaz-HerediaJ, Garcia-GomezI, Gonzalez-LizanF, Elias-MartinE, AbrairaV. The effect of the addition of adipose-derived mesenchymal stem cells to a meniscal repair in the avascular zone: an experimental study in rabbits. Arthroscopy27(12), 1688–1696 (2011).
  • Moradi L , VaseiM, DehghanMM, MajidiM, FarzadMohajeri S, BonakdarS. Regeneration of meniscus tissue using adipose mesenchymal stem cells-chondrocytes co-culture on a hybrid scaffold: In vivo study. Biomaterials126, 18–30 (2017).
  • Dragoo JL , CarlsonG, MccormickFet al. Healing full-thickness cartilage defects using adipose-derived stem cells. Tissue Eng.13(7), 1615–1621 (2007).
  • Fox DB , WarnockJJ, StokerAM, LutherJK, CockrellM. Effects of growth factors on equine synovial fibroblasts seeded on synthetic scaffolds for avascular meniscal tissue engineering. Res. Vet. Sci.88(2), 326–332 (2010).
  • Kohno Y , MizunoM, OzekiNet al. Yields and chondrogenic potential of primary synovial mesenchymal stem cells are comparable between rheumatoid arthritis and osteoarthritis patients. Stem Cell Res. Ther.8(1), 115 (2017).
  • Nimura A , MunetaT, KogaHet al. Increased proliferation of human synovial mesenchymal stem cells with autologous human serum: comparisons with bone marrow mesenchymal stem cells and with fetal bovine serum. Arthritis Rheum.58(2), 501–510 (2008).
  • Sakaguchi Y , SekiyaI, YagishitaK, MunetaT. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum.52(8), 2521–2529 (2005).
  • Warnock JJ , BobeG, Duesterdieck-ZellmerKF. Fibrochondrogenic potential of synoviocytes from osteoarthritic and normal joints cultured as tensioned bioscaffolds for meniscal tissue engineering in dogs. PeerJ2, e581 (2014).
  • Hatsushika D , MunetaT, NakamuraTet al. Repetitive allogeneic intraarticular injections of synovial mesenchymal stem cells promote meniscus regeneration in a porcine massive meniscus defect model. Osteoarthr. Cartil.22(7), 941–950 (2014).
  • Cui X , HasegawaA, LotzM, D’LimaD. Structured three-dimensional co-culture of mesenchymal stem cells with meniscus cells promotes meniscal phenotype without hypertrophy. Biotechnol. Bioeng.109(9), 2369–2380 (2012).
  • Marsano A , Millward-SadlerSJ, SalterDMet al. Differential cartilaginous tissue formation by human synovial membrane, fat pad, meniscus cells and articular chondrocytes. Osteoarthr. Cartil.15(1), 48–58 (2007).
  • Freymann U , EndresM, GoldmannU, SittingerM, KapsC. Toward scaffold-based meniscus repair: effect of human serum, hyaluronic acid and TGF-ss3 on cell recruitment and re-differentiation. Osteoarthr. Cartil.21(5), 773–781 (2013).
  • Matthies NF , Mulet-SierraA, JomhaNM, AdesidaAB. Matrix formation is enhanced in co-cultures of human meniscus cells with bone marrow stromal cells. J. Tissue Eng. Regen. Med.7(12), 965–973 (2013).
  • Schwartz JA , WangW, GoldsteinT, GrandeDA. Tissue engineered meniscus repair: influence of cell passage number, tissue origin, and biomaterial carrier. Cartilage5(3), 165–171 (2014).
  • Nakagawa Y , FortierLA, MaoJJet al. Long-term evaluation of meniscal tissue formation in 3-dimensional-printed scaffolds with sequential release of connective tissue growth factor and TGF-beta3 in an ovine model. Am. J. Sports Med.47(11), 2596–2607 (2019).
  • Puetzer JL , BrownBN, BallynsJJ, BonassarLJ. The effect of IGF-I on anatomically shaped tissue-engineered menisci. Tissue Eng. Part A19(11–12), 1443–1450 (2013).
  • Tumia NS , JohnstoneAJ. Regional regenerative potential of meniscal cartilage exposed to recombinant insulin-like growth factor-I in vitro. J. Bone Joint Surg. Br.86(7), 1077–1081 (2004).
  • Tarafder S , GulkoJ, KimDet al. Effect of dose and release rate of CTGF and TGFbeta3 on avascular meniscus healing. J. Orthop. Res.37(7), 1555–1562 (2019).
  • Ozeki N , MunetaT, KogaHet al. Transplantation of Achilles tendon treated with bone morphogenetic protein 7 promotes meniscus regeneration in a rat model of massive meniscal defect. Arthritis Rheum.65(11), 2876–2886 (2013).
  • Zellner J , TaegerCD, SchafferMet al. Are applied growth factors able to mimic the positive effects of mesenchymal stem cells on the regeneration of meniscus in the avascular zone? Biomed. Res. Int. 2014, 537686 (2014).
  • Vanderman KS , LoeserRF, ChubinskayaS, AndersonA, FergusonCM. Reduced response of human meniscal cells to Osteogenic Protein 1 during osteoarthritis and pro-inflammatory stimulation. Osteoarthr. Cartil.24(6), 1036–1046 (2016).
  • Yuan X , EngGM, ArkonacDE, ChaoPH, Vunjak-NovakovicG. Endothelial cells enhance the migration of bovine meniscus cells. Arthritis Rheumatol.67(1), 182–192 (2015).
  • Hidaka C , IbarraC, HannafinJAet al. Formation of vascularized meniscal tissue by combining gene therapy with tissue engineering. Tissue Eng.8(1), 93–105 (2002).
  • Hidalgo Perea S , LyonsLP, NishimutaJF, WeinbergJB, McnultyAL. Evaluation of culture conditions for in vitro meniscus repair model systems using bone marrow-derived mesenchymal stem cells. Connect. Tissue Res.61(3–4), 322–337 (2019).
  • Baker BM , ShahRP, HuangAH, MauckRL. Dynamic tensile loading improves the functional properties of mesenchymal stem cell-laden nanofiber-based fibrocartilage. Tissue Eng. Part A17(9–10), 1445–1455 (2011).
  • Cucchiarini M , SchmidtK, FrischJ, KohnD, MadryH. Overexpression of TGF-beta via rAAV-mediated gene transfer promotes the healing of human meniscal lesions ex vivo on explanted menisci. Am. J. Sports Med.43(5), 1197–1205 (2015).
  • Ruprecht JC , WaandersTD, RowlandCRet al. Meniscus-derived matrix scaffolds promote the integrative repair of meniscal defects. Sci. Rep.9(1), 8719 (2019).
  • Hennerbichler A , MoutosFT, HennerbichlerD, WeinbergJB, GuilakF. Repair response of the inner and outer regions of the porcine meniscus in vitro. Am. J. Sports Med.35(5), 754–762 (2007).
  • Donahue RP , Gonzalez-LeonEA, HuJC, AthanasiouK. Considerations for translation of tissue engineered fibrocartilage from bench to bedside. J. Biomech. Eng doi: 10.1115/1.4042201 (2018).
  • Mow VC , GibbsMC, LaiWM, ZhuWB, AthanasiouKA. Biphasic indentation of articular cartilage--II. A numerical algorithm and an experimental study. J. Biomech.22(8–9), 853–861 (1989).
  • Qu F , LinJ-MG, EsterhaiJL, FisherMB, MauckRL. Biomaterial-mediated delivery of degradative enzymes to improve meniscus integration and repair. Acta Biomater.9(5), 6393–6402 (2013).
  • Ionescu LC , MauckRL. Porosity and cell preseeding influence electrospun scaffold maturation and meniscus integration in vitro. Tissue Eng. Part A19(3–4), 538–547 (2013).
  • Kessler O , SommersM, AugustinTet al. Higher strains in the inner region of the meniscus indicate a potential source for degeneration. J. Biomech.48(8), 1377–1382 (2015).
  • Bansal S , KeahNM, NeuwirthALet al. Large animal models of meniscus repair and regeneration: a systematic review of the state of the field. Tissue Eng. C Methods23(11), 661–672 (2017).
  • Qu F , PintauroMP, HaughanJEet al. Repair of dense connective tissues via biomaterial-mediated matrix reprogramming of the wound interface. Biomaterials39, 85–94 (2015).
  • Weinand C , PerettiGM, AdamsSBJr, BonassarLJ, RandolphMA, GillTJ. An allogenic cell-based implant for meniscal lesions. Am. J. Sports Med.34(11), 1779–1789 (2006).
  • Moriguchi Y , TateishiK, AndoWet al. Repair of meniscal lesions using a scaffold-free tissue-engineered construct derived from allogenic synovial MSCs in a miniature swine model. Biomaterials34(9), 2185–2193 (2013).
  • Kon E , FilardoG, TschonMet al. Tissue engineering for total meniscal substitution: animal study in sheep model – results at 12 months. Tissue Eng. Part A18(15–16), 1573–1582 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.