295
Views
0
CrossRef citations to date
0
Altmetric
Special Report

Development of Nanoparticle Drug-Delivery Systems for The Inner Ear

ORCID Icon &
Pages 1981-1993 | Received 08 May 2020, Accepted 12 Jun 2020, Published online: 01 Jul 2020

References

  • Kim DK , ParkSN, ParkKHet al. Development of a drug delivery system for the inner ear using poly(amino acid)-based nanoparticles. Drug Deliv.22(3), 367–374 (2015).
  • Kim DK . Nanomedicine for inner ear diseases: a review of recent in vivo studies. Biomed. Res. Int.2017(6), 1–6 (2017).
  • Mittal R , PatelAP, NguyenDet al. Genetic basis of hearing loss in Spanish, Hispanic and Latino populations. Gene647, 297–305 (2018).
  • Cunningham LL , TucciDL. Hearing loss in adults. N. Engl. J. Med.377(25), 2465–2473 (2017).
  • Nieman CL , ReedNS, LinFR. Otolaryngology for the internist: hearing loss. Med. Clin. N. Am.102(6), 977–992 (2018).
  • Eshraghi AA , JungHD, MittalR. Recent advancements in gene and stem cell-based treatment modalities: potential implications in noise-induced hearing loss. Anat. Rec. (Hoboken)303(3), 516–526 (2019).
  • Mittal R , PenaSA, ZhuAet al. Nanoparticle-based drug delivery in the inner ear: current challenges, limitations and opportunities. Artif. Cells Nanomed. Biotechnol.47(1), (2019).
  • World Health Organisation . Deafness and hearing loss (2020). www.who.int/en/news-room/fact-sheets/detail/deafness-and-hearing-loss
  • Eshraghi AA , NazarianR, TelischiFF, RajguruSM, TruyE, GuptaC. The cochlear implant: historical aspects and future prospects. Anat. Rec.(Hoboken)295(11), 1967–1980 (2012).
  • Roche JP , HansenMR. On the horizon: cochlear implant technology. Otolaryngol. Clin. N. Am.48(6), 1097–1116 (2015).
  • Kayyali MN , WooltortonJRA, RamseyAJet al. A novel nanoparticle delivery system for targeted therapy of noise-induced hearing loss. J. Control. Rel.279, 243–250 (2018).
  • Pyykkö I , ZouJ, Schrott-FischerA, GluekertR, KinnunenP. An overview of nanoparticle based delivery for treatment of inner ear disorders. Methods Mol. Biol.1427, 363–415 (2016).
  • Mittal R , PatelAP, JhaveriVMet al. Recent advancements in nanoparticle based drug delivery for gastrointestinal disorders. Expert Opin. Drug Deliv.15(3), 301–318 (2018).
  • Mittal R , JhaveriVM, McMurryHSet al. Recent treatment modalities for cardiovascular diseases with a focus on stem cells, aptamers, exosomes and nanomedicine. Artif. Cells Nanomed. Biotechnol.46(Suppl. 1), 831–840 (2018).
  • Schwander M , KacharB, MüllerU. The cell biology of hearing. J. Cell Biol.190(1), 9–20 (2010).
  • Fettiplace R , HackneyCM. The sensory and motor roles of auditory hair cells. Nat. Rev. Neurosci.7(1), 19–29 (2006).
  • Hudspeth A . Integrating the active process of hair cells with cochlear function. Nat. Rev. Neurosci.15(9), 600 (2014).
  • Nyberg S , AbbottNJ, ShiX, SteygerPS, DabdoubA. Delivery of therapeutics to the inner ear: the challenge of the blood–labyrinth barrier. Sci. Transl. Med.11(482), eaao0935 (2019).
  • Cohen-Salmon M , RegnaultB, CayetNet al. Connexin30 deficiency causes instrastrial fluid–blood barrier disruption within the cochlear stria vascularis. Proc. Natl Acad. Sci. USA104(15), 6229–6234 (2007).
  • Shi Xiaorui . Pathophysiology of the cochlear intrastrial fluid–blood barrier (review). Hear. Res.338, 52–63 (2016).
  • Kitajiri SI . Compartmentalization established by claudin-11-based tight junctions in stria vascularis is required for hearing through generation of endocochlear potential. J. Cell Sci.117(21), 5087–5096 (2004).
  • Florian P , AmashehS, LessidrenskyMet al. Claudins in the tight junctions of stria vascularis marginal cells. Biochem. Biophys. Res. Commun.304(1), 5–10 (2003).
  • Steel KP , BarkwayC. Another role for melanocytes: their importance for normal stria vascularis development in the mammalian inner ear. Development107(3), 453–463 (1989).
  • Wu Y-X , ZhuG-X, LiuX-Qet al. Noise alters guinea pig’s blood–labyrinth barrier ultrastructure and permeability along with a decrease of cochlear claudin-5 and occludin. BMC Neurosci.15(1), 136 (2014).
  • Steven KJ , LeonardPR, LFW. Transport characteristics of the blood–perilymph barrier. Am. J. Otolaryngol.3(6), 392–396 (1982).
  • Gang C , XiaoZ, FanY, LeiM. Disposition of nanoparticle-based delivery system via inner ear administration. Curr. Drug Metab.11(10), 886–897 (2010).
  • Fowler EP . Streptomycin treatment of vertigo. Trans. Am. Acad. Ophthalmol. Otolaryngol.52, 293 (1948).
  • Graham MD , SataloffRT, KeminkJL. Titration streptomycin therapy for bilateral Meniere’s disease: a preliminary report. Otolaryngol. Head Neck Surg.92(4), 440–447 (1984).
  • Ruckenstein MJ . Autoimmune inner ear disease. Otolaryngol. Head Neck Surg.112(5), 171–174 (2004).
  • Yoda S , CureogluS, ShimizuSet al. Round window membrane in Ménière’s disease: a human temporal bone study. Otol. Neurotol.32(1), 147–151 (2015).
  • Okuda T , SugaharaK, ShimogoriH, YamashitaH. Inner ear changes with intracochlear gentamicin administration in guinea pigs. Laryngoscope114(4), 694–697 (2009).
  • Salt AN , PlontkeSKR. Local inner-ear drug delivery and pharmacokinetics. Drug Discov. Today10(19), 1299–1306 (2005).
  • Plontke SK , MikulecAA, SaltAN. Rapid clearance of methylprednisolone after intratympanic application in humans. Comment on: Bird PA, Begg EJ, Zhang M et al. Intratympanic versus intravenous delivery of methylprednisolone to cochlear perilymph. Otol. Neurotol. 28, 1124–1130 (2007). Otol. Neurotol.29(5), 732–733 (2008).
  • Barrs DM , KeyserJS, StallworthC, McElveenJTJr. Intratympanic steroid injections for intractable Meniere’s disease. Laryngoscope111(12), 2100–2104 (2001).
  • Plontke SK , LöwenheimH, MertensJet al. Randomized, double blind, placebo controlled trial on the safety and efficacy of continuous intratympanic dexamethasone delivered via a round window catheter for severe to profound sudden idiopathic sensorineural hearing loss after failure of systemic therapy. Laryngoscope119(2), 359–369 (2009).
  • Yang KJ , SonJ, JungSYet al. Optimized phospholipid-based nanoparticles for inner ear drug delivery and therapy. Biomaterials171, 133–143 (2018).
  • Pyykkö I , ZouJ, ZhangW, ZhangY. Nanoparticle-based delivery for the treatment of inner ear disorders. Curr. Opin. Otolaryngol. Head Neck Surg.19(5), 388–396 (2011).
  • Jero J , MhatreAN, TsengCJet al. Cochlear gene delivery through an intact round window membrane in mouse. Hum. Gene Ther.12(5), 539–548 (2001).
  • Staecker H , LiD, O’MalleyBW, VandeWater TR. Gene expression in the mammalian cochlea: a study of multiple vector systems. Acta Otolaryngol.121(2), 157–163 (2001).
  • Zheng F , ShiXW, YangGFet al. Chitosan nanoparticle as gene therapy vector via gastrointestinal mucosa administration: results of an in vitro and in vivo study. Life Sci.80(4), 388–396 (2007).
  • Surovtseva EV , JohnstonAH, ZhangWet al. Prestin binding peptides as ligands for targeted polymersome mediated drug delivery to outer hair cells in the inner ear. Int. J. Pharm.424(1–2), 121–127 (2012).
  • Zhang Y , ZhangW, JohnstonAH, NewmanTA, PyykköI, ZouJ. Targeted delivery of Tet1 peptide functionalized polymersomes to the rat cochlear nerve. Int. J. Nanomedicine7, 1015–1022 (2012).
  • Youm I , YouanBB. Uptake mechanism of furosemide-loaded pegylated nanoparticles by cochlear cell lines. Hear. Res.304, 7–19 (2013).
  • Paulson DP , AbuzeidW, JiangH, OeT, O’MalleyBW, LiD. A novel controlled local drug delivery system for inner ear disease. Laryngoscope118(4), 706–711 (2008).
  • Xu L , HeldrichJ, WangHet al. A controlled and sustained local gentamicin delivery system for inner ear applications. Otol. Neurotol.31(7), 1115–1121 (2010).
  • Lajud SA , HanZ, ChiF-Let al. A regulated delivery system for inner ear drug application. J. Control. Rel.166(3), 268–276 (2013).
  • Lajud SA , NagdaDA, QiaoPet al. A novel chitosan-hydrogel-based nanoparticle delivery system for local inner ear application. Otol. Neurotol.36(2), 341–347 (2015).
  • Sun C , WangX, ChenD, LinX, YuD, WuH. Dexamethasone loaded nanoparticles exert protective effects against cisplatin-induced hearing loss by systemic administration. Neurosci. Lett.619, 142–148 (2016).
  • Sakamoto T , NakagawaT, HorieRTet al. Inner ear drug delivery system from the clinical point of view. Acta Otolaryngol. Suppl.563, 101–104 (2010).
  • Husseman J , RaphaelY. Gene therapy in the inner ear using adenovirus vectors. In: Gene Therapy of Cochlear Deafness. RyanAF ( Ed.). Karger AG, Basel, Switzerland, 37–51 (2009).
  • Chen WT , LeeJW, YuanCH, ChenRF. Oral steroid treatment for idiopathic sudden sensorineural hearing loss. Saudi Med. J.36(3), 291 (2015).
  • Filipo R , AttanasioG, RussoFYet al. Oral versus short-term intratympanic prednisolone therapy for idiopathic sudden hearing loss. Audiol. Neurotol.19(4), 225–233 (2014).
  • Parnes LS , SunAH, FreemanDJ. Corticosteroid pharmacokinetics in the inner ear fluids: an animal study followed by clinical application. Laryngoscope109(S91), 1–17 (2010).
  • Yuan Fang QW . Development of drug delivery to inner ear. Chinese J. Otol.4, 575–580 (2018).
  • Schuknecht HF . Ablation therapy in the management of Meniere’s disease. Acta Otolaryngol.132, 1–42 (1957).
  • Pyykkö I , ZouJ, Schrott-FischerA, GlueckertR, KinnunenP. An overview of nanoparticle based delivery for treatment of inner ear disorders. Methods Mol. Biol.1427, 363–415 (2016).
  • Bangham AD , StandishMM, WatkinsJC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol.13(1), 238–252 (1965).
  • Gregoriadis G , RymanBE. Liposomes as carriers of enzymes or drugs: a new approach to the treatment of storage diseases. Biochem. J.124(5), 58P (1971).
  • Marty JJ , OppenheimRC, SpeiserP. Nanoparticles – a new colloidal drug delivery system. Pharm. Acta Helv.53(1), 17–23 (1978).
  • Kreuter J . Nanoparticles and nanocapsules – new dosage forms in the nanometer size range. Pharm. Acta Helv.53(2), 33–39 (1978).
  • Couvreur P , KanteB, RolandM, SpeiserP. Adsorption of antineoplastic drugs to polyalkylcyanoacrylate nanoparticles and their release in calf serum. J. Pharm. Sci.68(12), 1521–1524 (1979).
  • Pritz CO , DudásJ, Rask-AndersenH, Schrott-FischerA, GlueckertR. Nanomedicine strategies for drug delivery to the ear. Nanomedicine (Lond.)8(7), 1155–1172 (2013).
  • Roy S , JohnstonAH, NewmanTAet al. Cell-specific targeting in the mouse inner ear using nanoparticles conjugated with a neurotrophin-derived peptide ligand: potential tool for drug delivery. Int. J. Pharm.390(2), 214–224 (2010).
  • Du X , ChenK, KuriyavarSet al. Magnetic targeted delivery of dexamethasone acetate across the round window membrane in guinea pigs. Otol. Neurotol.34(1), 41–47 (2013).
  • Lundman L , Bagger-SjöbäckD, HolmquistL, JuhnS. Round window membrane permeability: an in vitro model. Acta Otolaryngol.104(Suppl. 442), 41–43 (1987).
  • Liu H , ChenS, ZhouYet al. The effect of surface charge of glycerol monooleate-based nanoparticles on the round window membrane permeability and cochlear distribution. J. Drug Target.21(9), 846–854 (2013).
  • Smith BM , MyersMG. The penetration of gentamicin and neomycin into perilymph across the round window membrane. Otolaryngol. Head Neck Surg.87(6), 888 (1979).
  • Zhang Y , SuH, WenL, YangF, ChenG. Mathematical modeling for local trans-round window membrane drug transport in the inner ear. Drug Deliv.23(8), 1 (2016).
  • Zhang Y , ZhangW, LoblerMet al. Inner ear biocompatibility of lipid nanocapsules after round window membrane application. Int. J. Pharm.404(1–2), 211–219 (2011).
  • Cai H , LiangZ, HuangW, WenL, ChenG. Engineering PLGA nano-based systems through understanding the influence of nanoparticle properties and cell-penetrating peptides for cochlear drug delivery. Int. J. Pharm.532(1), 55–65 (2017).
  • Zhang L , XuY, CaoW, XieS, WenL, ChenG. Understanding the translocation mechanism of PLGA nanoparticles across round window membrane into the inner ear: a guideline for inner ear drug delivery based on nanomedicine. Int. J. Nanomedicine13, 479–492 (2018).
  • King EB , SaltAN, EastwoodHT, O’LearySJ. Direct entry of gadolinium into the vestibule following intratympanic applications in Guinea pigs and the influence of cochlear implantation. J. Assoc. Res. Otolaryngol.12(6), 741–751 (2011).
  • King EB , SaltAN, KelGE, EastwoodHT, O’LearySJ. Gentamicin administration on the stapes footplate causes greater hearing loss and vestibulotoxicity than round window administration in guinea pigs. Hear. Res.304(10), 159–166 (2013).
  • Zou J , PoeD, RamadanUA, PyykköI. Oval window transport of Gd-dOTA from rat middle ear to vestibulum and scala vestibuli visualized by in vivo magnetic resonance imaging. Ann. Otol. Rhinol. Laryngol.121(2), 119–128 (2012).
  • Zou J , PyykkoIB, DastidarP, ToppilaE. Communication between the perilymphatic scalae and spiral ligament visualized by in vivo MRI. Audiol. Neurootol.10(3), 145–152 (2005).
  • Ding S , XieS, ChenWet al. Is oval window transport a royal gate for nanoparticle delivery to vestibule in the inner ear? Eur. J. Pharm. Sci. 126, 11–22 (2018).
  • Praetorius GT , BrunnerC, LehnertBet al. Transsynaptic delivery of nanoparticles to the central auditory nervous system. Acta Otolaryngol.127(5), 486–490 (2007).
  • Kneuer C , SametiM, BakowskyUet al. A nonviral DNA delivery system based on surface modified silica-nanoparticles can efficiently transfect cells in vitro. Bioconjug. Chem.11(6), 926–932 (2000).
  • Sameti M , BohrG, RaviKumar MNet al. Stabilisation by freeze-drying of cationically modified silica nanoparticles for gene delivery. Int. J. Pharm.266(1–2), 51–60 (2003).
  • Wang Y , WiseAK, TanJ, MainaJW, ShepherdRK, CarusoF. Mesoporous silica supraparticles for sustained inner-ear drug delivery. Small10(21), 4244–4248 (2014).
  • Gluekert R , PritzCO, RoyS, DudasJ, Schrott-FischerA. Nanoparticle mediated drug delivery of rolipram to tyrosine kinase B positive cells in the inner ear with targeting peptides and agonistic antibodies. Front. Aging Neurosci.7, 71 (2015).
  • Wang Y , WiseAK, TanJ, MainaJW, ShepherdRK, CarusoF. Mesoporous silica supraparticles for sustained inner-ear drug delivery. Small10(21), 4244–4248 (2014).
  • Pritz CO , BitscheM, SalvenmoserW, DudásJ, Schrott-FischerA, GlueckertR. Endocytic trafficking of silica nanoparticles in a cell line derived from the organ of Corti. Nanomedicine (Lond.)8(2), 239–252 (2012).
  • Praetorius M , BrunnerC, LehnertBet al. Transsynaptic delivery of nanoparticles to the central auditory nervous system. Acta Otolaryngol.127(5), 486–490 (2007).
  • Champagne PO , WestwickH, BouthillierA, SawanM. Colloidal stability of superparamagnetic iron oxide nanoparticles in the central nervous system: a review. Nanomedicine (Lond.)13(11), 1385–1400 (2018).
  • Wahajuddin , AroraS. Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int. J. Nanomedicine7, 3445–3471 (2012).
  • Mondalek FG , ZhangYY, KroppBet al. The permeability of SPION over an artificial three-layer membrane is enhanced by external magnetic field. J. Nanobiotechnol.4(1), 4 (2006).
  • Barnes AL , WasselRA, MondalekF, ChenK, DormerKJ, KopkeRD. Magnetic characterization of superparamagnetic nanoparticles pulled through model membranes. Biomagn. Res. Technol.5(1), 1 (2007).
  • Zou J , ZhangW, PoeDet al. MRI manifestation of novel superparamagnetic iron oxide nanoparticles in the rat inner ear. Nanomedicine (Lond.)5(5), 739–754 (2010).
  • Kopke RD , WasselR, MondalekFet al. Magnetic nanoparticles: inner ear targeted molecule delivery and middle ear implant. Audiol. Neurootol.11(2), 123–133 (2006).
  • Dormer KJ , AwasthiV, GalbraithW, KopkeRD, ChenK, WasselR. Magnetically-targeted, technetium 99m-labeled nanoparticles to the inner ear. J. Biomed. Nanotechnol.4(2), 174–184 (2008).
  • Dormer K , SmithN, KopkeRet al. Feasibility of superparamagnetic nanoparticles for drug delivery to the inner ear. In: Technical Proceedings of the 2005 NSTI Nanotechnology Conference and Trade Show, Volume 1. 132–135 (2005). https://briefs.techconnect.org/wp-content/volumes/Nanotech2005v1/pdf/1093.pdf
  • Rd K , RaW, FMet al. Magnetic nanoparticles: inner ear targeted molecule delivery and middle ear implant. Audiol. Neurootol.11(2), 123–133 (2006).
  • Nguyen Y , CelerierC, PszczolinskiRet al. Superparamagnetic nanoparticles as vectors for inner ear treatments: driving and toxicity evaluation. Acta Otolaryngol.136(4), 402–408 (2016).
  • Watada Y , YamashitaD, ToyodaMet al. Magnetic resonance monitoring of superparamagnetic iron oxide (SPIO)-labeled stem cells transplanted into the inner ear. Neurosci. Res.95, 21–26 (2015).
  • Du X , ChenK, KuriyavarSet al. Magnetic targeted delivery of dexamethasone acetate across the round window membrane in guinea pigs. Otol. Neurotol.34(1), 41–47 (2013).
  • Mondalek FG , ZhangYY, KroppBet al. The permeability of SPION over an artificial three-layer membrane is enhanced by external magnetic field. J. Nanobiotechnol.4, 4 (2006).
  • Chen G , HouSX, HuP, JinMZ, LiuJ. [Preliminary study on brain-targeted drug delivery via inner ear]. Yao Xue Xue Bao42(10), 1102–1106 (2007).
  • Zou J , SaulnierP, PerrierTet al. Distribution of lipid nanocapsules in different cochlear cell populations after round window membrane permeation. J. Biomed. Mater. Res. B Appl. Biomater.87B(1), 10–18 (2008).
  • Scheper V , WolfM, SchollMet al. Potential novel drug carriers for inner ear treatment: hyperbranched polylysine and lipid nanocapsules. Nanomedicine (Lond.)4(6), 623–635 (2009).
  • Chen G , HouSX, HuP, HuQH, GuoDD, XiaoY. [In vitro dexamethasone release from nanoparticles and its pharmacokinetics in the inner ear after administration of the drug-loaded nanoparticles via the round window]. Nan Fang Yi Ke Da Xue Xue Bao28(6), 1022–1024 (2008).
  • Roy S , GluekertR, JohnstonAHet al. Strategies for drug delivery to the human inner ear by multifunctional nanoparticles. Nanomedicine (Lond.)7(1), 55–63 (2012).
  • Wareing M , MhatreAN, PettisRet al. Cationic liposome mediated transgene expression in the guinea pig cochlea. Hear. Res.128(1–2), 61–69 (1999).
  • Staecker H , LiD, O’MalleyBW, VanDe Water TR. Gene expression in the mammalian cochlea: a study of multiple vector systems. Acta Otolaryngol.121(2), 157–163 (2001).
  • Jero J , TsengCJ, MhatreAN, LalwaniAK. A surgical approach appropriate for targeted cochlear gene therapy in the mouse. Hear. Res.151(1–2), 106–114 (2001).
  • Zylberberg C , GaskillK, PasleyS, MatosevicS. Engineering liposomal nanoparticles for targeted gene therapy. Gene Ther.24, 441 (2017).
  • Panahi Y , FarshbafM, MohammadhosseiniMet al. Recent advances on liposomal nanoparticles: synthesis, characterization and biomedical applications. Artif. Cells Nanomed. Biotechnol.45(4), 788–799 (2017).
  • Maeda Y , FukushimaK, KawasakiA, NishizakiK, SmithRJH. Cochlear expression of a dominant-negative GJB2R75W construct delivered through the round window membrane in mice. Neurosci. Res.58(3), 250–254 (2007).
  • Buckiova D , RanjanS, NewmanTAet al. Minimally invasive drug delivery to the cochlea through application of nanoparticles to the round window membrane. Nanomedicine (Lond.)7(9), 1339–1354 (2012).
  • Roy S , JohnstonAH, NewmanTAet al. Cell-specific targeting in the mouse inner ear using nanoparticles conjugated with a neurotrophin-derived peptide ligand: potential tool for drug delivery. Int. J. Pharm.390(2), 214–224 (2010).
  • Mittal R , PenaSA, ZhuAet al. Nanoparticle-based drug delivery in the inner ear: current challenges, limitations and opportunities. Artif. Cells Nanomed. Biotechnol.47(1), 1312–1320 (2019).
  • Veronese FM , MeroA. The impact of PEGylation on biological therapies. BioDrugs22(5), 315–329 (2008).
  • Ge X , JacksonRL, LiuJet al. Distribution of PLGA nanoparticles in chinchilla cochleae. Otolaryngol. Head Neck Surg.137(4), 619–623 (2007).
  • Tamura T , KitaT, NagagawaTet al. Drug delivery to the cochlea using PLGA nanoparticles. Laryngoscope115(11), 2000–2005 (2005).
  • Ge X , JacksonRL, LiuJet al. Distribution of PLGA nanoparticles in chinchilla cochleae. Otolaryngol. Head Neck Surg.137(4), 619–623 (2007).
  • Zhang L , XuY, CaoW, XieS, WenL, ChenG. Understanding the translocation mechanism of PLGA nanoparticles across round window membrane into the inner ear: a guideline for inner ear drug delivery based on nanomedicine. Int. J. Nanomedicine13, 479–492 (2018).
  • Du X , CaiQ, WestMBet al. Regeneration of cochlear hair cells and hearing recovery through hes1 modulation with siRNA nanoparticles in adult guinea pigs. Mol. Ther.26(5), 1313–1326 (2018).
  • Dai J , LongW, LiangZ, WenL, YangF, ChenG. A novel vehicle for local protein delivery to the inner ear: injectable and biodegradable thermosensitive hydrogel loaded with PLGA nanoparticles. Drug Dev. Indust. Pharm.44(1), 89–98 (2018).
  • Cai H , WenX, WenLet al. Enhanced local bioavailability of single or compound drugs delivery to the inner ear through application of PLGA nanoparticles via round window administration. Int. J. Nanomedicine9, 5591–5601 (2014).
  • Cai H , LiangZ, HuangW, WenL, ChenG. Engineering PLGA nano-based systems through understanding the influence of nanoparticle properties and cell-penetrating peptides for cochlear drug delivery. Int. J. Pharm.532(1), 55–65 (2017).
  • Lajud SA , NagdaDA, QiaoPet al. A novel chitosan-hydrogel-based nanoparticle delivery system for local inner ear application. Otol. Neurotol.36(2), 341–347 (2015).
  • Paulson DP , AbuzeidW, JiangH, OeT, O’MalleyBW, LiD. A novel controlled local drug delivery system for inner ear disease. Laryngoscope118(4), 706–711 (2008).
  • Xu L , HeldrichJ, HaiboWet al. A controlled and sustained local gentamicin delivery system for inner ear applications. Otol. Neurotol.31(7), 1115–1121 (2010).
  • Luo J , XuL. Distribution of gentamicin in inner ear after local administration via a chitosan glycerophosphate hydrogel delivery system. Ann. Otol. Rhinol. Laryngol.121(3), 208–216 (2012).
  • Lafond JF , ShimojiM, RamaswamyBet al. Middle ear histopathology following magnetic delivery to the cochlea of prednisolone-loaded iron oxide nanoparticles in rats. Toxicol. Pathol.46(1), 101–106 (2018).
  • Mahmoudi M , SahraianMA, ShokrgozarMA, LaurentS. Superparamagnetic iron oxide nanoparticles: promises for diagnosis and treatment of multiple sclerosis. ACS Chem. Neurosci.2(3), 118–140 (2011).
  • Jalani G , NaccacheR, RosenzweigDH, HaglundL, VetroneF, CerrutiM. Photocleavable hydrogel coated upconverting nanoparticles: a multifunctional theranostic platform for NIR imaging and on-demand macromolecular delivery. J. Am. Chem. Soc.138(3), 1078 (2015).
  • Sun X , SunH, LiH, PengH. Developing polymer composite materials: carbon nanotubes or graphene?Adv. Mater.25(37), 5153–5176 (2013).
  • Merino S , MartínC, KostarelosK, PratoM, VázquezE. Nanocomposite hydrogels: 3D polymer–nanoparticle synergies for on-demand drug delivery. ACS Nano9(5), 4686–4697 (2015).
  • Shin SR , BaeH, ChaJMet al. Carbon nanotube reinforced hybrid microgels as scaffold materials for cell encapsulation. ACS Nano6(1), 362–372 (2012).
  • Basuki J , QieF, MuletXet al. Photo-modulated therapeutic protein release from a hydrogel depot using visible light. Angew. Chem.56(4), 966–971 (2017).
  • Wang P , SunJ, LouZet al. Assembly-induced thermogenesis of gold nanoparticles in the presence of alternating magnetic field for controllable drug release of hydrogel. Adv. Mater.28(48), 10801 (2016).
  • Sun C , WangX, ChenD, LinX, YuD, WuH. Dexamethasone loaded nanoparticles exert protective effects against cisplatin-induced hearing loss by systemic administration. Neurosci. Lett.619, 142–148 (2016).
  • Martínsaldaña S , PalaosuayR, TrinidadA, AguilarMR, RamírezcamachoR, SanRJ. Otoprotective properties of 6α-methylprednisolone-loaded nanoparticles against cisplatin: in vitro and in vivo correlation. Nanomedicine12(4), 965–976 (2016).
  • Yoon JY , YangKJ, KimDEet al. Intratympanic delivery of oligoarginine-conjugated nanoparticles as a gene (or drug) carrier to the inner ear. Biomaterials73, 243–253 (2015).
  • Gentilin E , SimoniE, CanditoM, CazzadorD, AstolfiL. Cisplatin-induced ototoxicity: updates on molecular targets. Trends Mol. Med.25(12), 1123–1132 (2019).
  • Mittal R , PenaSA, ZhuAet al. Nanoparticle-based drug delivery in the inner ear: current challenges, limitations and opportunities. Artif. Cells Nanomed. Biotechnol.47(1), 1312–1320 (2019).
  • Rybak LP , MukherjeaD, RamkumarV. Mechanisms of cisplatin-induced ototoxicity and prevention. Semin. Hear.40(2), 197–204 (2019).
  • Li L , ChaoT, BrantJ, O’MalleyB, TsourkasA, LiD. Advances in nano-based inner ear delivery systems for the treatment of sensorineural hearing loss. Adv. Drug Deliv. Rev.108, 2–12 (2017).
  • Zhou S , SunY, KuangXet al. Mitochondria-homing peptide functionalized nanoparticles performing dual extracellular/intracellular roles to inhibit aminoglycosides induced ototoxicity. Artif. Cells Nanomed. Biotechnol.46(Suppl. 2), 314–323 (2018).
  • Zhou S , SunY, KuangXet al. Mitochondria-targeting nanomedicine: an effective and potent strategy against aminoglycosides-induced ototoxicity. Eur. J. Pharm. Sci.126, 59–68 (2019).
  • Wang X , ChenY, TaoY, GaoY, YuD, WuH. A666-conjugated nanoparticles target prestin of outer hair cells preventing cisplatin-induced hearing loss. Int. J. Nanomedicine13, 7517–7531 (2018).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.