159
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Colonic Delivery of Vasoactive Intestinal Peptide Nanomedicine Alleviates Colitis and Shows Promise as An Oral Capsule

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 2459-2474 | Received 01 Jul 2020, Accepted 14 Aug 2020, Published online: 25 Sep 2020

References

  • Abad C , WaschekJA. Immunomodulatory roles of VIP and PACAP in models of multiple sclerosis. Curr. Pharm. Des.17(10), 1025–1035 (2011).
  • Delgado M , MartinezC, PozoDet al. Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activation polypeptide (PACAP) protect mice from lethal endotoxemia through the inhibition of TNF-α and IL-6. J. Immunol.162(2), 1200–1205 (1999).
  • Gomariz R , MartinezC, AbadC, LecetaJ, DelgadoM. Immunology of VIP: a review and therapeutical perspectives. Curr. Pharm. Des.7(2), 89–111 (2001).
  • Smalley S , BarrowP, FosterN. Immunomodulation of innate immune responses by vasoactive intestinal peptide (VIP): its therapeutic potential in inflammatory disease. Clin. Exp. Immunol.157(2), 225–234 (2009).
  • Seo S , MiyakeH, AlganabiMet al. Vasoactive intestinal peptide decreases inflammation and tight junction disruption in experimental necrotizing enterocolitis. J. Pediatr. Surg.54(12), 2520–2523 (2019).
  • Campbell J , BerryJ, LiangY. Anatomy and physiology of the small intestine. In: Shackelford’s Surgery of the Alimentary Tract - 2 Volume Set.Elsevier, PA, USA, 817–841 (2019).
  • Seillet C , LuongK, TellierJet al. The neuropeptide VIP confers anticipatory mucosal immunity by regulating ILC3 activity. Nat. Immunol.21, 168–177 (2019).
  • Jönsson M , NorrgårdÖ, HanssonM, ForsgrenS. Decrease in binding for the neuropeptide VIP in response to marked inflammation of the mucosa in ulcerative colitis. Ann. NY Acad. Sci.1107(1), 280–289 (2007).
  • Mazumdar S , DasKM. Immunocytochemical localization of vasoactive intestinal peptide and substance P in the colon from normal subjects and patients with inflammatory bowel disease. Am. J. Gastroenterol.87(2), 176–181 (1992).
  • Cassuto J , FahrenkrugJ, JodalM, TuttleR, LundgrenO. Release of vasoactive intestinal polypeptide from the cat small intestine exposed to cholera toxin. Gut22(11), 958–963 (1981).
  • Guan X , KarpenHE, StephensJet al. GLP-2 receptor localizes to enteric neurons and endocrine cells expressing vasoactive peptides and mediates increased blood flow. Gastroenterology130(1), 150–164 (2006).
  • Dharmsathaphorn K , HarmsV, YamashiroDJ, HughesR, BinderH, WrightE. Preferential binding of vasoactive intestinal polypeptide to basolateral membrane of rat and rabbit enterocytes. J. Clin. Invest.71(1), 27–35 (1983).
  • Jayawardena D , GuzmanG, GillRK, AlrefaiWA, OnyukselH, DudejaPK. Expression and localization of VPAC1, the major receptor of vasoactive intestinal peptide along the length of the intestine. Am. J. Physiol. Gastrointest. Liver Physiol.313(1), G16–G25 (2017).
  • Jayawardena D , AnbazhaganAN, GuzmanG, DudejaPK, OnyukselH. Vasoactive intestinal peptide nanomedicine for the management of inflammatory bowel disease. Mol. Pharm.14(11), 3698–3708 (2017).
  • Abad C , MartinezC, JuarranzMGet al. Therapeutic effects of vasoactive intestinal peptide in the trinitrobenzene sulfonic acid mice model of Crohn’s disease. Gastroenterology124(4), 961–971 (2003).
  • Motlekar NA , YouanB-BC. The quest for non-invasive delivery of bioactive macromolecules: a focus on heparins. J. Control. Rel.113(2), 91–101 (2006).
  • Lim SB , RubinsteinI, ÖnyükselH. Freeze drying of peptide drugs self-associated with long-circulating, biocompatible and biodegradable sterically stabilized phospholipid nanomicelles. Int. J. Pharm.356(1–2), 345–350 (2008).
  • Nair AB , JacobS. A simple practice guide for dose conversion between animals and human. J. Basic Clin. Pharm.7(2), 27 (2016).
  • Sethi V , RubinsteinI, KuzmisA, KastrissiosH, ArtwohlJ, OnyukselH. Novel, biocompatible, and disease modifying VIP nanomedicine for rheumatoid arthritis. Mol. Pharm.10(2), 728–738 (2013).
  • Banerjee A , OnyukselH. Peptide delivery using phospholipid micelles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.4(5), 562–574 (2012).
  • Lim SB , BanerjeeA, ÖnyükselH. Improvement of drug safety by the use of lipid-based nanocarriers. J. Control. Rel.163(1), 34–45 (2012).
  • Vukovic L , MadriagaA, KuzmisAet al. Solubilization of therapeutic agents in micellar nanomedicines. Langmuir29(51), 15747–15754 (2013).
  • Krawisz J , SharonP, StensonW. Quantitative assay for acute intestinal inflammation based on myeloperoxidase activity: assessment of inflammation in rat and hamster models. Gastroenterology87(6), 1344–1350 (1984).
  • Viennois E , ChenF, LarouiH, BakerMT, MerlinD. Dextran sodium sulfate inhibits the activities of both polymerase and reverse transcriptase: lithium chloride purification, a rapid and efficient technique to purify RNA. BMC Res. Notes6(1), 360 (2013).
  • Schmittgen TD , LivakKJ. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc.3(6), 1101–1108 (2008).
  • Lindén SK , FlorinTH, McguckinMA. Mucin dynamics in intestinal bacterial infection. PLoS ONE3(12), e3952 (2008).
  • McConnell EL , FaddaHM, BasitAW. Gut instincts: explorations in intestinal physiology and drug delivery. Int. J. Pharm.364(2), 213–226 (2008).
  • Önyüksel H , BodaliaB, SethiV, DagarS, RubinsteinaI. Surface-active properties of vasoactive intestinal peptide*. Peptides21(3), 419–423 (2000).
  • Kaplan GG . The global burden of IBD: from 2015 to 2025. Nat. Rev. Gastroenterol. Hepatol.12(12), 720–727 (2015).
  • Frokjaer S , OtzenDE. Protein drug stability: a formulation challenge. Nat. Rev. Drug Discov.4(4), 298 (2005).
  • Lewis AL , RichardJ. Challenges in the delivery of peptide drugs: an industry perspective. Ther. Deliv.6(2), 149–163 (2015).
  • Richard J . Challenges in oral peptide delivery: lessons learnt from the clinic and future prospects. Ther. Deliv.8(8), 663–684 (2017).
  • Sarmento B , RibeiroA, VeigaF, SampaioP, NeufeldR, FerreiraD. Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm. Res.24(12), 2198–2206 (2007).
  • Sarmento B , MartinsS, FerreiraD, SoutoEB. Oral insulin delivery by means of solid lipid nanoparticles. Int. J. Nanomedicine2(4), 743 (2007).
  • Araújo F , ShresthaN, ShahbaziM-Aet al. The impact of nanoparticles on the mucosal translocation and transport of GLP-1 across the intestinal epithelium. Biomaterials35(33), 9199–9207 (2014).
  • Li C , ZhaoY, ChengJet al. A proresolving peptide nanotherapy for site-specific treatment of inflammatory bowel disease by regulating proinflammatory microenvironment and gut microbiota. Adv. Sci.6(18), 1900610 (2019).
  • Laroui H , DalmassoG, NguyenHTT, YanY, SitaramanSV, MerlinD. Drug-loaded nanoparticles targeted to the colon with polysaccharide hydrogel reduce colitis in a mouse model. Gastroenterology138(3), 843–853 (2010).
  • Ensign LM , ConeR, HanesJ. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv. Drug Deliv. Rev.64(6), 557–570 (2012).
  • Des Rieux A , FievezV, GarinotM, SchneiderY-J, PréatV. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J. Control. Rel.116(1), 1–27 (2006).
  • Hamman JH , EnslinGM, KotzéAF. Oral delivery of peptide drugs. BioDrugs19(3), 165–177 (2005).
  • Hua S , MarksE, SchneiderJJ, KeelyS. Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: selective targeting to diseased versus healthy tissue. Nanomedicine11(5), 1117–1132 (2015).
  • Xiao B , MerlinD. Oral colon-specific therapeutic approaches toward treatment of inflammatory bowel disease. Expert Opin. Drug Deliv.9(11), 1393–1407 (2012).
  • Taipaleenmäki EM , MouritzenSA, SchattlingPS, ZhangY, StädlerB. Mucopenetrating micelles with a PEG corona. Nanoscale9(46), 18438–18448 (2017).
  • Chapman NJ , BrownML, PhillipsSFet al. Distribution of mesalamine enemas in patients with active distal ulcerative colitis. Mayo Clin. Proc.67(3), 245–248 (1992).
  • Sandborn W , TremaineW, LeightonJAet al. Nicotine tartrate liquid enemas for mildly to moderately active left-sided ulcerative colitis unresponsive to first-line therapy: a pilot study. Aliment. Pharmacol. Ther.11(4), 663–671 (1997).
  • Greenfield NJ . Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc.1(6), 2876 (2006).
  • Mody R , TramontanoA, PaulS. Spontaneous hydrolysis of vasoactive intestinal peptide in neutral aqueous solution. Chem. Biol. Drug Des.44(5), 441–447 (1994).
  • Cui X , CaoD, QuC, ZhangX, ZhengA. A study of the chemical and biological stability of vasoactive intestinal peptide. Drug Dev. Ind. Pharm.39(12), 1907–1910 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.