198
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Synthesis and Characterization of Vitamin D3-Functionalized Carbon Dots for Crispr/Cas9 Delivery

, , , , , , , , , , , & ORCID Icon show all
Pages 1673-1690 | Received 02 Feb 2021, Accepted 03 Jun 2021, Published online: 22 Jul 2021

References

  • Cong L , RanFA, CoxDet al. Multiplex genome engineering using CRISPR/Cas systems. Science339(6121), 819–823 (2013).
  • Hsu PD , LanderES, ZhangF. Development and applications of CRISPR-Cas9 for genome engineering. Cell157(6), 1262–1278 (2014).
  • Doudna JA , CharpentierE. The new frontier of genome engineering with CRISPR-Cas9. Science346(6213), 1258096 (2014).
  • Horvath P , BarrangouR. CRISPR/Cas, the immune system of bacteria and archaea. Science327(5962), 167–170 (2010).
  • Sorek R , KuninV, HugenholtzP. CRISPR – a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat. Rev. Microbiol.6(3), 181–186 (2008).
  • Sander JD , JoungJK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol.32(4), 347–355 (2014).
  • Shalem O , SanjanaNE, HartenianEet al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science343(6166), 84–87 (2014).
  • Sun J , Anand-JawaV, ChatterjeeS, WongK. Immune responses to adeno-associated virus and its recombinant vectors. Gene Ther.10(11), 964–976 (2003).
  • Donahue R , KesslerSW, BodineDet al. Helper virus induced T cell lymphoma in nonhuman primates after retroviral mediated gene transfer. J. Exp. Med.176(4), 1125–1135 (1992).
  • Lehrman S . Virus treatment questioned after gene therapy death. Nature401, 517–518 (1999).
  • Niidome T , HuangL. Gene therapy progress and prospects: nonviral vectors. Gene Ther.9(24), 1647–1652 (2002).
  • Pack DW , HoffmanAS, PunS, StaytonPS. Design and development of polymers for gene delivery. Nat. Rev. Drug Discov.4(7), 581–593 (2005).
  • Li S-D , HuangL. Non-viral is superior to viral gene delivery. J. Control. Release123(3), 181–183 (2007).
  • Wang P , ZhangL, XieYet al. Genome editing for cancer therapy: delivery of Cas9 protein/sgRNA plasmid via a gold nanocluster/lipid core–shell nanocarrier. Adv. Sci.4(11), 1700175 (2017).
  • Yue H , ZhouX, ChengM, XingD. Graphene oxide-mediated Cas9/sgRNA delivery for efficient genome editing. Nanoscale10(3), 1063–1071 (2018).
  • Zhou W , CuiH, YingL, YuXF. Enhanced cytosolic delivery and release of CRISPR/Cas9 by black phosphorus nanosheets for genome editing. Angew. Chem.130(32), 10425–10429 (2018).
  • Alsaiari SK , PatilS, AlyamiMet al. Endosomal escape and delivery of CRISPR/Cas9 genome editing machinery enabled by nanoscale zeolitic imidazolate framework. J. Am. Chem. Soc.140(1), 143–146 (2018).
  • Zuris JA , ThompsonDB, ShuYet al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat. Biotechnol.33(1), 73–80 (2015).
  • Yin H , SongC-Q, DorkinJRet al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat. Biotechnol.34(3), 328–333 (2016).
  • Wang M , ZurisJA, MengFet al. Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles. Proc. Natl Acad. Sci USA113(11), 2868–2873 (2016).
  • Mintzer MA , SimanekEE. Nonviral vectors for gene delivery. Chem. Rev.109(2), 259–302 (2009).
  • Davis ME . Non-viral gene delivery systems. Curr. Opin. Biotechnol.13(2), 128–131 (2002).
  • Han X , LiuZ, ChanJo Met al. CRISPR-Cas9 delivery to hard-to-transfect cells via membrane deformation. Sci. Adv.1(7), e1500454 (2015).
  • Wang H-X , SongZ, LaoY-Het al. Nonviral gene editing via CRISPR/Cas9 delivery by membrane-disruptive and endosomolytic helical polypeptide. Proc. Natl Acad. Sci USA115(19), 4903–4908 (2018).
  • Fischer D , BieberT, LiY, ElsässerH-P, KisselT. A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharm. Res.16(8), 1273–1279 (1999).
  • Zuo G , JiaoY, GaoRet al. Lipophilic red-emitting oligomeric organic dots for moisture detection and cell imaging. ACS Appl. Nano Mater.3(2), 1942–1949 (2020).
  • Zuo G , XieA, LiJ, SuT, PanX, DongW. Large emission red-shift of carbon dots by fluorine doping and their applications for red cell imaging and sensitive intracellular Ag+ detection. J. Phys. Chem. C121(47), 26558–26565 (2017).
  • Xu X , RayR, GuYet al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc.126(40), 12736–12737 (2004).
  • Cao L , WangX, MezianiMJet al. Carbon dots for multiphoton bioimaging. J. Am. Chem. Soc.129(37), 11318–11319 (2007).
  • Zheng L , ChiY, DongY, LinJ, WangB. Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite. J. Am. Chem. Soc.131(13), 4564–4565 (2009).
  • So RC , SanggoJE, JinL, DiazJMA, GuerreroRA, HeJ. Gram-scale synthesis and kinetic study of bright carbon dots from citric acid and Citrus japonica via a microwave-assisted method. ACS Omega2(8), 5196–5208 (2017).
  • Li H , HeX, LiuYet al. One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon49(2), 605–609 (2011).
  • Yang Z-C , WangM, YongAMet al. Intrinsically fluorescent carbon dots with tunable emission derived from hydrothermal treatment of glucose in the presence of monopotassium phosphate. Chem. Commun.47(42), 11615–11617 (2011).
  • Hasanzadeh A , RadmaneshF, KianiJet al. Photoluminescent functionalized carbon dots for CRISPR delivery: synthesis, optimization and cellular investigation. Nanotechnology30(13), 135101 (2019).
  • Liu C , ZhangP, ZhaiXet al. Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials33(13), 3604–3613 (2012).
  • Pierrat P , WangR, KereselidzeDet al. Efficient in vitro and in vivo pulmonary delivery of nucleic acid by carbon dot-based nanocarriers. Biomaterials51, 290–302 (2015).
  • Finn JD , SmithAR, PatelMCet al. A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Rep.22(9), 2227–2235 (2018).
  • Wang L , ZhengW, LiuS, LiB, JiangX. Delivery of CRISPR/Cas9 by novel strategies for gene therapy. ChemBioChem20(5), 634–643 (2019).
  • Li W , SzokaFC. Lipid-based nanoparticles for nucleic acid delivery. Pharm. Res.24(3), 438–449 (2007).
  • Montague TG , CruzJM, GagnonJA, ChurchGM, ValenE. CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res.42(W1), W401–W407 (2014).
  • Labun K , MontagueTG, GagnonJA, ThymeSB, ValenE. CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering. Nucleic Acids Res.44(W1), W272–W276 (2016).
  • Zhu H , WangX, LiY, WangZ, YangF, YangX. Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem. Commun.34, 5118–5120 (2009).
  • Cialla D , MärzA, BöhmeRet al. Surface-enhanced Raman spectroscopy (SERS): progress and trends. Anal. Bioanal. Chem.403(1), 27–54 (2012).
  • Cebeci-Maltaş D , AlamMA, WangP, Ben-AmotzD. Photobleaching profile of Raman peaks and fluorescence background. Eur. Pharm. Rev.22(6), 18–21 (2017).
  • Cheng L , LiY, ZhaiX, XuB, CaoZ, LiuW. Polycation-b-polyzwitterion copolymer grafted luminescent carbon dots as a multifunctional platform for serum-resistant gene delivery and bioimaging. ACS Appl. Mater. Interfaces6(22), 20487–20497 (2014).
  • Peng J , GaoW, GuptaBKet al. Graphene quantum dots derived from carbon fibers. Nano Lett.12(2), 844–849 (2012).
  • Xu H , LiZ, SiJ. Nanocarriers in gene therapy: a review. J. Biomed. Nanotechnol.10(12), 3483–3507 (2014).
  • Li L , HeZ-Y, WeiX-W, GaoG-P, WeiY-Q. Challenges in CRISPR/CAS9 delivery: potential roles of nonviral vectors. Human Gene Ther.26(7), 452–462 (2015).
  • Yin H , KanastyRL, EltoukhyAA, VegasAJ, DorkinJR, AndersonDG. Non-viral vectors for gene-based therapy. Nat. Rev. Genetics15(8), 541–555 (2014).
  • Kreiss P , MailheP, SchermanDet al. Plasmid DNA size does not affect the physicochemical properties of lipoplexes but modulates gene transfer efficiency. Nucleic Acids Res.27(19), 3792–3798 (1999).
  • Shin Y , WangL-Q, BaeI-T, AreyBW, ExarhosGJ. Hydrothermal syntheses of colloidal carbon spheres from cyclodextrins. J. Phys. Chem. C112(37), 14236–14240 (2008).
  • Das P , GangulyS, BoseMet al. Zinc and nitrogen ornamented bluish white luminescent carbon dots for engrossing bacteriostatic activity and Fenton based bio-sensor. Mater. Sci. Eng. C88, 115–129 (2018).
  • Carbonaro CM , CorpinoR, SalisMet al. On the emission properties of carbon dots: reviewing data and discussing models. C J. Carbon Res.5(4), 60 (2019).
  • Liu M , ChenB, XueYet al. Polyamidoamine-grafted multiwalled carbon nanotubes for gene delivery: synthesis, transfection and intracellular trafficking. Bioconjug. Chem.22(11), 2237–2243 (2011).
  • Zhao Q-L , ZhangZ-L, HuangB-H, PengJ, ZhangM, PangD-W. Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chem. Commun.41, 5116–5118 (2008).
  • Deng WW , CaoX, WangMet al. Efficient gene delivery to mesenchymal stem cells by an ethylenediamine‐modified polysaccharide from mulberry leaves. Small8(3), 441–451 (2012).
  • Pérez-López FR . Vitamin D: the secosteroid hormone and human reproduction. Gynecol. Endocrinol.23(1), 13–24 (2007).
  • Khanal R , NemereI. Membrane receptors for vitamin D metabolites. Crit. Rev. Eukaryot. Gene Expr.17(1), 31–47 (2007).
  • Haussler MR , WhitfieldGK, KanekoIet al. Molecular mechanisms of vitamin D action. Calcified Tissue Int.92(2), 77–98 (2013).
  • Zhang Y , Bradshaw‐PierceEL, DelilleA, GustafsonDL, AnchordoquyTJ. In vivo comparative study of lipid/DNA complexes with different in vitro serum stability: effects on biodistribution and tumor accumulation. J. Pharm. Sci.97(1), 237–250 (2008).
  • Duarte S , FanecaH, DeLima MCP. Non-covalent association of folate to lipoplexes: a promising strategy to improve gene delivery in the presence of serum. J. Control. Release149(3), 264–272 (2011).
  • Faneca H , SimoesS, DeLima MP. Evaluation of lipid-based reagents to mediate intracellular gene delivery. Biochim. Biophys. Acta Biomembranes1567, 23–33 (2002).
  • Desmet ML , FleetJC. Constitutively active RAS signaling reduces 1, 25 dihydroxyvitamin D-mediated gene transcription in intestinal epithelial cells by reducing vitamin D receptor expression. J. Steroid Biochem. Mol. Biol.173, 194–201 (2017).
  • Jeon S-M , ShinE-A. Exploring vitamin D metabolism and function in cancer. Exp. Mol. Med.50(4), 1–14 (2018).
  • Kampa M , PapakonstantiEA, HatzoglouA, StathopoulosEN, StournarasC, CastanasE. The human prostate cancer cell line LNCaP bears functional membrane testosterone receptors, which increase PSA secretion and modify actin cytoskeleton. FASEB J.16(11), 1429–1431 (2002).
  • Huhtakangas JA , OliveraCJ, BishopJE, ZanelloLP, NormanAW. The vitamin D receptor is present in caveolae-enriched plasma membranes and binds 1α, 25 (OH) 2-vitamin D3in vivo and in vitro. Mol. Endocrinol.18(11), 2660–2671 (2004).
  • Dursun E , Gezen-AkD. Vitamin D receptor is present on the neuronal plasma membrane and is co-localized with amyloid precursor protein, ADAM10 or Nicastrin. PLoS ONE12(11), e0188605 (2017).
  • Kim H , KimJ-S. A guide to genome engineering with programmable nucleases. Nat. Rev. Genetics15(5), 321–334 (2014).
  • Liu C , ZhangL, LiuH, ChengK. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. J. Control. Release266, 17–26 (2017).
  • Ran FA , HsuPD, WrightJ, AgarwalaV, ScottDA, ZhangF. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc.8(11), 2281–2308 (2013).
  • Pascolo S . Vaccination with messenger RNA (mRNA). In: Toll-like Receptors (TLRs) and Innate Immunity.BauerS, HartmannG ( Eds). Springer, Berlin, Germany, 221–235 (2008).
  • Jackson LA , AndersonEJ, RouphaelNGet al. An mRNA vaccine against SARS-CoV-2 – preliminary report. N. Engl. J. Med.383(20), 1920–1931 (2020).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.