521
Views
0
CrossRef citations to date
0
Altmetric
Review

Celecoxib Repurposing in Cancer Therapy: Molecular Mechanisms and Nanomedicine-Based Delivery Technologies

ORCID Icon, ORCID Icon, , , , ORCID Icon & ORCID Icon show all
Pages 1691-1712 | Received 03 Mar 2021, Accepted 04 Jun 2021, Published online: 15 Jul 2021

References

  • Gunaydin C , BilgeSS. Effects of nonsteroidal anti-inflammatory drugs at the molecular level. Eurasian J. Med.50(2), 116–121 (2018).
  • Tortorella MD , ZhangY, TalleyJ. Desirable properties for 3rd generation cyclooxygenase-2 inhibitors. Mini Rev. Med. Chem.16(16), 1284–1289 (2016).
  • Kismet K , AkayMT, AbbasogluO, ErcanA. Celecoxib: a potent cyclooxygenase-2 inhibitor in cancer prevention. Cancer Detect. Prev.28(2), 127–142 (2004).
  • Huang C , ChenY, LiuHet al. Celecoxib targets breast cancer stem cells by inhibiting the synthesis of prostaglandin E2 and down-regulating the Wnt pathway activity. Oncotarget8(70), 115254–115269 (2017).
  • Li J , HaoQ, CaoW, VadgamaJV, WuY. Celecoxib in breast cancer prevention and therapy. Cancer Manag. Res.10, 4653–4667 (2018).
  • Hamy AS , TuryS, WangXet al. Celecoxib with neoadjuvant chemotherapy for breast cancer might worsen outcomes differentially by COX-2 expression and ER status: exploratory analysis of the REMAGUS02 trial. J. Clin. Oncol.37(8), 624–635 (2019).
  • Blanke CD . Celecoxib with chemotherapy in colorectal cancer. Oncology (Williston Park)16(3 Suppl. 4), 17–21 (2002).
  • Guo Q , LiQ, WangJet al. A comprehensive evaluation of clinical efficacy and safety of celecoxib in combination with chemotherapy in metastatic or postoperative recurrent gastric cancer patients: a preliminary, three-center, clinical trial study. Medicine (Baltimore)98(27), e16234–e16234 (2019).
  • Takhar H , SinghalN, MislangAet al. Phase II study of celecoxib with docetaxel chemoradiotherapy followed by consolidation chemotherapy docetaxel plus cisplatin with maintenance celecoxib in inoperable stage III nonsmall cell lung cancer. Asia Pac. J. Clin. Oncol.14(1), 91–100 (2018).
  • Lee R , ChoiYJ, JeongMSet al. Hyaluronic acid-decorated glycol chitosan nanoparticles for pH-sensitive controlled release of doxorubicin and celecoxib in nonsmall cell lung cancer. Bioconjug. Chem.31(3), 923–932 (2020).
  • Dai P , LiJ, MaXP, HuangJ, MengJJ, GongP. Efficacy and safety of COX-2 inhibitors for advanced non-small-cell lung cancer with chemotherapy: a meta-analysis. Onco Targets Ther.11, 721–730 (2018).
  • Yusup G , AkutsuY, MutallipMet al. A COX-2 inhibitor enhances the antitumor effects of chemotherapy and radiotherapy for esophageal squamous cell carcinoma. Int. J. Oncol.44(4), 1146–1152 (2014).
  • Gong L , ThornCF, BertagnolliMM, GrosserT, AltmanRB, KleinTE. Celecoxib pathways: pharmacokinetics and pharmacodynamics. Pharmacogenet. Genomics22(4), 310–318 (2012).
  • Zhang W , YiL, ShenJ, ZhangH, LuoP, ZhangJ. Comparison of the benefits of celecoxib combined with anticancer therapy in advanced non-small cell lung cancer: a meta-analysis. J. Cancer11(7), 1816–1827 (2020).
  • Zhou S , YangS, HuangG. Design, synthesis and bioactivities of celecoxib analogues or derivatives. Bioorg. Med. Chem.25(17), 4887–4893 (2017).
  • Park D , KimY, KimHet al. Hyaluronic acid promotes angiogenesis by inducing RHAMM-TGFβ receptor interaction via CD44-PKCδ. Mol. Cells33(6), 563–574 (2012).
  • Abuzar SM , HyunSM, KimJHet al. Enhancing the solubility and bioavailability of poorly water-soluble drugs using supercritical antisolvent (SAS) process. Int. J. Pharm.538(1–2), 1–13 (2018).
  • Heravi RE , HadizadehF, SankianMet al. Novel selective Cox-2 inhibitors induce apoptosis in Caco-2 colorectal carcinoma cell line. Eur. J. Pharm. Sci.44(4), 479–486 (2011).
  • Wang Z , ChenJ-Q, LiuJ-L. COX-2 Inhibitors and gastric cancer. Gastroenterol. Res. Pract.2014, 132320 (2014).
  • Xia D , WangD, KimS-H, DuBoisRN. Prostaglandin E2 promotes intestinal tumor growth via DNA methylation. Nat. Med.18(2), 224–226 (2012).
  • Chiu C-H , McEnteeMF, WhelanJ. Sulindac causes rapid regression of preexisting tumors in Min/+ mice independent of prostaglandin biosynthesis. Cancer Res.57(19), 4267–4273 (1997).
  • Dubois RN , HylindLM, RobinsonCRet al. Prostaglandin levels in human colorectal mucosa (effects of sulindac in patients with familial adenomatous polyposis). Digest. Dis. Sci.43(2), 311–316 (1998).
  • Zelenay S , VanDer Veen AG, BöttcherJPet al. Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell162(6), 1257–1270 (2015).
  • Xu S , ZhouW, GeJ, ZhangZ. Prostaglandin E2 receptor EP4 is involved in the cell growth and invasion of prostate cancer via the cAMP- PKA/PI3K- Akt signaling pathway. Mol. Med. Rep.17(3), 4702–4712 (2018).
  • Huang C , ChenY, LiuHet al. Celecoxib targets breast cancer stem cells by inhibiting the synthesis of prostaglandin E2 and down-regulating the Wnt pathway activity. Oncotarget8(70), 115254 (2017).
  • Dai Z-J , MaX-B, KangH-Fet al. Antitumor activity of the selective cyclooxygenase-2 inhibitor, celecoxib, on breast cancer in vitro and in vivo. Cancer Cell Int.12(1), 53 (2012).
  • Yusup G , AkutsuY, MutallipMet al. A COX-2 inhibitor enhances the antitumor effects of chemotherapy and radiotherapy for esophageal squamous cell carcinoma. Int. J. Oncol.44(4), 1146–1152 (2014).
  • Liu X , YueP, ZhouZ, KhuriFR, SunS-Y. Death receptor regulation and celecoxib-induced apoptosis in human lung cancer cells. J. Natl Cancer Inst.96(23), 1769–1780 (2004).
  • Kim B , KimJ, KimYS. Celecoxib induces cell death on non-small cell lung cancer cells through endoplasmic reticulum stress. Anat. Cell Biol.50(4), 293–300 (2017).
  • Pang R-P , ZhouJ-G, ZengZ-Ret al. Celecoxib induces apoptosis in COX-2 deficient human gastric cancer cells through Akt/GSK3β/NAG-1 pathway. Cancer Lett.251(2), 268–277 (2007).
  • Piazza GA , ThompsonWJ, PamukcuRet al. Exisulind, a novel proapoptotic drug, inhibits rat urinary bladder tumorigenesis. Cancer Res.61(10), 3961–3968 (2001).
  • Tinsley HN , GaryBD, KeetonABet al. Sulindac sulfide selectively inhibits growth and induces apoptosis of human breast tumor cells by phosphodiesterase 5 inhibition, elevation of cyclic GMP, and activation of protein kinase G. Mol. Cancer Ther.8(12), 3331–3340 (2009).
  • Tinsley HN , GaryBD, ThaiparambilJet al. Colon tumor cell growth–inhibitory activity of sulindac sulfide and other nonsteroidal anti-inflammatory drugs is associated with phosphodiesterase 5 inhibition. Cancer Prev. Res.3(10), 1303–1313 (2010).
  • Soh JW , KaziJU, LiH, ThompsonWJ, WeinsteinIB. Celecoxib-induced growth inhibition in SW480 colon cancer cells is associated with activation of protein kinase G. Mol. Carcinog.47(7), 519–525 (2008).
  • Wang H , YangY-B, ShenH-M, GuJ, LiT, LiX-M. ABT-737 induces Bim expression via JNK signaling pathway and its effect on the radiation sensitivity of HeLa cells. PLoS ONE7(12), (2012).
  • Houseknecht KL , ColeBM, SteelePJ. Peroxisome proliferator-activated receptor gamma (PPAR-γ) and its ligands: a review. Domest. Anim. Endocrinol.22(1), 1–23 (2002).
  • Knopfová L , ŠmardaJ. The use of Cox-2 and PPAR-γ signaling in anti-cancer therapies. Exp. Ther. Med.1(2), 257–264 (2010).
  • Gupta RA , TanJ, KrauseWFet al. Prostacyclin-mediated activation of peroxisome proliferator-activated receptor δ in colorectal cancer. Proc. Natl Acad. Sci. USA97(24), 13275–13280 (2000).
  • Hatae T . Wada M, Yokoyama C, Shimonishi M, Tanabe T. Prostacyclin-dependent apoptosis mediated by PPAR δ. J. Biol. Chem.276, 46260–46267 (2001).
  • He T-C , ChanTA, VogelsteinB, KinzlerKW. PPARδ is an APC-regulated target of nonsteroidal anti-inflammatory drugs. Cell99(3), 335–345 (1999).
  • Liou J-Y , GhelaniD, YehS, WuKK. Nonsteroidal anti-inflammatory drugs induce colorectal cancer cell apoptosis by suppressing 14-3-3ε. Cancer Res.67(7), 3185–3191 (2007).
  • Li LT , JiangG, ChenQ, ZhengJN. Ki67 is a promising molecular target in the diagnosis of cancer. Mol. Med. Rep.11(3), 1566–1572 (2015).
  • Huang J , PowellWC, KhodavirdiACet al. Prostatic intraepithelial neoplasia in mice with conditional disruption of the retinoid X receptor α allele in the prostate epithelium. Cancer Res.62(16), 4812–4819 (2002).
  • Brown JR , DuBoisRN. COX-2: a molecular target for colorectal cancer prevention. J. Clin. Oncol.23(12), 2840–2855 (2005).
  • Zhou H , LiuW, SuYet al. NSAID sulindac and its analog bind RXR-α and inhibit RXR-α-dependent AKT signaling. Cancer Cell17(6), 560–573 (2010).
  • Dawson MI , ZhangX. Discovery and design of retinoic acid receptor and retinoid X receptor class- and subtype-selective synthetic analogs of all-trans-retinoic acid and 9-cis-retinoic acid. Curr. Med. Chem.9(6), 623–637 (2002).
  • Gupta SC , SundaramC, ReuterS, AggarwalBB. Inhibiting NF-κB activation by small molecules as a therapeutic strategy. Biochim. Biophys. Acta1799(10–12), 775–787 (2010).
  • Takada Y , BhardwajA, PotdarP, AggarwalBB. Nonsteroidal anti-inflammatory agents differ in their ability to suppress NF-κ B activation, inhibition of expression of cyclooxygenase-2 and cyclin D1, and abrogation of tumor cell proliferation. Oncogene23(57), 9247–9258 (2004).
  • Wang G , LiJ, ZhangL, HuangS, ZhaoX, ZhaoX. Celecoxib induced apoptosis against different breast cancer cell lines by down-regulated NF-κB pathway. Biochem. Biophys. Res. Commun.490(3), 969–976 (2017).
  • Yamamoto Y . Yin MJ, Lin KM, Gaynor RB. Sulindac inhibits activation of the NF-kappaB pathway. J. Biol. Chem.274, 27307–27314 (1999).
  • Shishodia S , AggarwalBB. Cyclooxygenase (COX)-2 inhibitor celecoxib abrogates activation of cigarette smoke-induced nuclear factor (NF)-κB by suppressing activation of I-κB α kinase in human non-small cell lung carcinoma: correlation with suppression of cyclin D1, COX-2, and matrix metalloproteinase-9. Cancer Res.64(14), 5004–5012 (2004).
  • Kim S-H , SongS-H, KimS-Get al. Celecoxib induces apoptosis in cervical cancer cells independent of cyclooxygenase using NF-κB as a possible target. J. Cancer Res. Clin. Oncol.130(9), 551–560 (2004).
  • AbdulHameed MDM , HamzaA, ZhanC-G. Microscopic modes and free energies of 3-phosphoinositide-dependent kinase-1 (PDK1) binding with celecoxib and other inhibitors. J. Phys. Chem. B110(51), 26365–26374 (2006).
  • Kulp SK , YangY-T, HungC-Cet al. 3-phosphoinositide-dependent protein kinase-1/Akt signaling represents a major cyclooxygenase-2-independent target for celecoxib in prostate cancer cells. Cancer Res.64(4), 1444–1451 (2004).
  • Zhu J , HuangJ-W, TsengP-Het al. From the cyclooxygenase-2 inhibitor celecoxib to a novel class of 3-phosphoinositide-dependent protein kinase-1 inhibitors. Cancer Res.64(12), 4309–4318 (2004).
  • Wei Y , HanX, ZhaoC. PDK1 regulates the survival of the developing cortical interneurons. Molecular brain13, 1–14 (2020).
  • Hanada M , FengJ, HemmingsBA. Structure, regulation and function of PKB/AKT — a major therapeutic target. Biochim. Biophys. Acta1697(1–2), 3–16 (2004).
  • Arico S , PattingreS, BauvyCet al. Celecoxib induces apoptosis by inhibiting 3-phosphoinositide-dependent protein kinase-1 activity in the human colon cancer HT-29 cell line. J. Biol. Chem.277(31), 27613–27621 (2002).
  • Sinicrope FA , HalfE, MorrisJSet al. Cell proliferation and apoptotic indices predict adenoma regression in a placebo-controlled trial of celecoxib in familial adenomatous polyposis patients. Cancer Epidemiol. Biomarkers Prev.13(6), 920–927 (2004).
  • Bundscherer A , VogtT, KoehlG, LandthalerM, HafnerC. Antiproliferative effects of rapamycin and celecoxib in angiosarcoma cell lines. Anticancer Res.30(10), 4017–4023 (2010).
  • Mao JT , RothMD, FishbeinMCet al. Lung cancer chemoprevention with celecoxib in former smokers. Cancer Prev. Res.4(7), 984–993 (2011).
  • Oshima M , MuraiN, KargmanSet al. Chemoprevention of intestinal polyposis in the ApcΔ716 mouse by rofecoxib, a specific cyclooxygenase-2 inhibitor. Cancer Res.61(4), 1733–1740 (2001).
  • Setiawati A . Celecoxib, a COX-2 selective inhibitor, induces cell cycle arrest at the G2/M phase in HeLa cervical cancer cells. Asia Pac. J. Cancer Prev.17(4), 1655–1659 (2016).
  • Kunte DP , WaliRK, KoetsierJL, RoyHK. Antiproliferative effect of sulindac in colonic neoplasia prevention: role of COOH-terminal Src kinase. Mol. Cancer Ther.7(7), 1797–1806 (2008).
  • Kardosh A , BlumenthalM, WangWJ, ChenTC, SchonthalAH. Differential effects of selective COX-2 inhibitors on cell cycle regulation and proliferation of glioblastoma cell lines. Cancer Biol. Ther.3(1), 55–62 (2004).
  • Narayanan BA , CondonMS, BoslandMC, NarayananNK, ReddyBS. Suppression of N-methyl-N-nitrosourea/testosterone-induced rat prostate cancer growth by celecoxib: effects on cyclooxygenase-2, cell cycle regulation, and apoptosis mechanism (s). Clin. Cancer Res.9(9), 3503–3513 (2003).
  • Liang J , SlingerlandJM. Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression. Cell Cycle2, 339–345 (2003).
  • Viglietto G , MottiML, BruniPet al. Cytoplasmic relocalization and inhibition of the cyclin-dependent kinase inhibitor p27(Kip1) by PKB/Akt-mediated phosphorylation in breast cancer. Nat. Med.8(10), 1136–1144 (2002).
  • Gurpinar E , GrizzleWE, PiazzaGA. COX-independent mechanisms of cancer chemoprevention by anti-inflammatory drugs. Front. Oncol.3, 181 (2013).
  • Brown J , Von RoennJ, O’ReganRet al. A phase II study of the proteasome inhibitor PS-341 in patients (pts) with metastatic breast cancer (MBC). J. Clin. Oncol.22(Suppl. 14), 546–546 (2004).
  • Regulski M , RegulskaK, PrukałaW, PiotrowskaH, StaniszB, MuriasM. COX-2 inhibitors: a novel strategy in the management of breast cancer. Drug Discov. Today21(4), 598–615 (2016).
  • Galon J , CostesA, Sanchez-CaboFet al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science313(5795), 1960–1964 (2006).
  • Sui W , ZhangY, WangZet al. Antitumor effect of a selective COX-2 inhibitor, celecoxib, may be attributed to angiogenesis inhibition through modulating the PTEN/PI3K/Akt/HIF-1 pathway in an H22 murine hepatocarcinoma model. Oncol. Rep.31(5), 2252–2260 (2014).
  • Elwich-Flis S , Sołtysiak-PawluczukD, SpławińskiJ. Anti-angiogenic and apoptotic effects of metabolites of sulindac on chick embryo chorioallantoic membrane. Hybrid. Hybridomics22(1), 55–60 (2003).
  • Rosas C , SinningM, FerreiraA, FuenzalidaM, LemusD. Celecoxib decreases growth and angiogenesis and promotes apoptosis in a tumor cell line resistant to chemotherapy. Biol. Res.47(1), 27 (2014).
  • Xu K , WangL, ShuH-KG. COX-2 overexpression increases malignant potential of human glioma cells through Id1. Oncotarget5(5), 1241–1252 (2014).
  • Kwon IK , SchoenleinPV, DelkJet al. Expression of cyclic guanosine monophosphate-dependent protein kinase in metastatic colon carcinoma cells blocks tumor angiogenesis. Cancer112(7), 1462–1470 (2008).
  • Wei D , WangL, HeY, XiongHQ, AbbruzzeseJL, XieK. Celecoxib inhibits vascular endothelial growth factor expression in and reduces angiogenesis and metastasis of human pancreatic cancer via suppression of Sp1 transcription factor activity. Cancer Res.64(6), 2030–2038 (2004).
  • Abdelrahim M , SafeS. Cyclooxygenase-2 inhibitors decrease vascular endothelial growth factor expression in colon cancer cells by enhanced degradation of Sp1 and Sp4 proteins. Mol. Pharmacol.68(2), 317–329 (2005).
  • Lin H-P , KulpSK, TsengP-Het al. Growth inhibitory effects of celecoxib in human umbilical vein endothelial cells are mediated through G1 arrest via multiple signaling mechanisms. Mol. Cancer Ther.3(12), 1671–1680 (2004).
  • Virrey JJ , LiuZ, ChoH-Yet al. Antiangiogenic activities of 2,5-dimethyl-celecoxib on the tumor vasculature. Mol. Cancer Ther.9(3), 631–641 (2010).
  • Niederberger E , ManderscheidC, GröschS, SchmidtH, EhnertC, GeisslingerG. Effects of the selective COX-2 inhibitors celecoxib and rofecoxib on human vascular cells. Biochem. Pharmacol.68(2), 341–350 (2004).
  • Wang L , ChenW, XieX, HeY, BaiX. Celecoxib inhibits tumor growth and angiogenesis in an orthotopic implantation tumor model of human colon cancer. Exp. Oncol.30(1), 42–51 (2008).
  • Ghanghas P , JainS, RanaC, SanyalSN. Chemoprevention of colon cancer through inhibition of angiogenesis and induction of apoptosis by nonsteroidal anti-inflammatory drugs. J. Environ. Pathol. Toxicol. Oncol.35(3), 273–289 (2016).
  • Gungor H , IlhanN, EroksuzH. The effectiveness of cyclooxygenase-2 inhibitors and evaluation of angiogenesis in the model of experimental colorectal cancer. Biomed. Pharmacother.102, 221–229 (2018).
  • Zuo C , HongY, QiuXet al. Celecoxib suppresses proliferation and metastasis of pancreatic cancer cells by down-regulating STAT3/NF-kB and L1CAM activities. Pancreatol.18(3), 328–333 (2018).
  • Mizushima N . Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature451, 1069–1075 (2008).
  • White E . Deconvoluting the context-dependent role for autophagy in cancer. Nat. Rev. Cancer12(6), 401–410 (2012).
  • Lu Y , LiuL-L, LiuS-Set al. Celecoxib suppresses autophagy and enhances cytotoxicity of imatinib in imatinib-resistant chronic myeloid leukemia cells. J. Transl. Med.14(1), 270 (2016).
  • Liu M , LiC-M, ChenZ-Fet al. Celecoxib regulates apoptosis and autophagy via the PI3K/Akt signaling pathway in SGC-7901 gastric cancer cells. Int. J. Mol. Med.33(6), 1451–1458 (2014).
  • Gao M , YehPY, LuY-Set al. OSU-03012, a novel celecoxib derivative, induces reactive oxygen species-related autophagy in hepatocellular carcinoma. Cancer Res.68(22), 9348–9357 (2008).
  • Huang S , SinicropeF. Celecoxib-induced apoptosis is enhanced by ABT-737 and by inhibition of autophagy in human colorectal cancer cells. Autophagy6(2), 256–269 (2010).
  • Yu C , LiWB, LiuJB, LuJW, FengJF. Autophagy: novel applications of nonsteroidal anti-inflammatory drugs for primary cancer. Cancer Med.7(2), 471–484 (2018).
  • Siddiqa AJ , ChaudhuryK, AdhikariB. Letrozole dispersed on poly (vinyl alcohol) anchored maleic anhydride grafted low density polyethylene: a controlled drug delivery system for treatment of breast cancer. Colloids Surf. B Biointerfaces116, 169–175 (2014).
  • Seedher N , BhatiaS. Solubility enhancement of Cox-2 inhibitors using various solvent systems. AAPS PharmSciTech4(3), E33 (2003).
  • Qandil AM , ElMohtadi FH, TashtoushBM. Chemical and in vitro enzymatic stability of newly synthesized celecoxib lipophilic and hydrophilic amides. Int. J. Pharm.416(1), 85–96 (2011).
  • He J , HanY, XuGet al. Preparation and evaluation of celecoxib nanosuspensions for bioavailability enhancement. RSC Adv.7(22), 13053–13064 (2017).
  • Paulson WD , RamSJ, WorkJ. Access blood flow: debate continues. Semin. Dial.14(6), 459–460 (2001).
  • Dolenc A , KristlJ, BaumgartnerS, PlaninsekO. Advantages of celecoxib nanosuspension formulation and transformation into tablets. Int. J. Pharm.376(1–2), 204–212 (2009).
  • He X , BaroneMR, MarsacPJ, SperryDC. Development of a rapidly dispersing tablet of a poorly wettable compound: formulation DOE and mechanistic study of effect of formulation excipients on wetting of celecoxib. Int. J. Pharm.353(1–2), 176–186 (2008).
  • Soppimath KS , AminabhaviTM, KulkarniAR, RudzinskiWE. Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Rel.70(1–2), 1–20 (2001).
  • Li J , BurgessDJ. Nanomedicine-based drug delivery towards tumor biological and immunological microenvironment. Acta Pharm. Sin. B10(11), 2110–2124 (2020).
  • He W , XingX, WangXet al. Nanocarrier-mediated cytosolic delivery of biopharmaceuticals. Adv. Funct. Mater.30(37), 1910566 (2020).
  • Matbou Riahi M , SahebkarA, SadriK, Nikoofal-SahlabadiS, JaafariMR. Stable and sustained release liposomal formulations of celecoxib: in vitro and in vivo anti-tumor evaluation. Int. J. Pharm.540(1–2), 89–97 (2018).
  • Perumal V , BanerjeeS, DasS, SenRK, MandalM. Effect of liposomal celecoxib on proliferation of colon cancer cell and inhibition of DMBA-induced tumor in rat model. Cancer Nanotechnol.2(1–6), 67–79 (2011).
  • Ahmed KS , ChanglingS, ShanX, MaoJ, QiuL, ChenJ. Liposome-based codelivery of celecoxib and doxorubicin hydrochloride as a synergistic dual-drug delivery system for enhancing the anticancer effect. J. Liposome Res.30(3), 285–296 (2020).
  • Singh S . Liposome encapsulation of doxorubicin and celecoxib in combination inhibits progression of human skin cancer cells. Int. J. Nanomed.13( T-NANO 2014 Abstracts), 11–13 (2018).
  • Gowda R , KardosG, SharmaA, SinghS, RobertsonGP. Nanoparticle-based celecoxib and plumbagin for the synergistic treatment of melanoma. Mol. Cancer Ther.16(3), 440–452 (2017).
  • Alajami H , FouadE, AshourA, ElbadawyA, KumarA, YassinA. Loading celecoxib into solid lipid nanoparticles significantly enhanced the anticancer activity. Presented at: 45th Controlled Release Society (CRS) Annual Meeting.NY, USA, (22–24 July 2018).
  • Üner M , YenerG, ErgüvenM. Design of colloidal drug carriers of celecoxib for use in treatment of breast cancer and leukemia. Mater. Sci. Eng. C Mater. Biol. Appl.103, 109874 (2019).
  • Patlolla RR , ChouguleM, PatelAR, JacksonT, TataPN, SinghM. Formulation, characterization and pulmonary deposition of nebulized celecoxib encapsulated nanostructured lipid carriers. J. Control. Rel.144(2), 233–241 (2010).
  • Emami J , PourmashhadiA, SadeghiH, VarshosazJ, HamishehkarH. Formulation and optimization of celecoxib-loaded PLGA nanoparticles by the Taguchi design and their in vitro cytotoxicity for lung cancer therapy. Pharm. Dev. Technol.20(7), 791–800 (2015).
  • Vera M , BarciaE, NegroSet al. New celecoxib multiparticulate systems to improve glioblastoma treatment. Int. J. Pharm.473(1–2), 518–527 (2014).
  • Said-Elbahr R , NasrM, AlhnanMA, TahaI, SammourO. Nebulizable colloidal nanoparticles co-encapsulating a COX-2 inhibitor and a herbal compound for treatment of lung cancer. Eur. J. Pharm. Biopharm.103, 1–12 (2016).
  • Zhang S , GuoN, WanGet al. pH and redox dual-responsive nanoparticles based on disulfide-containing poly(β-amino ester) for combining chemotherapy and COX-2 inhibitor to overcome drug resistance in breast cancer. J. Nanobiotechnol.17(1), 109 (2019).
  • Yu R-Y , XingL, CuiP-Fet al. Regulating the Golgi apparatus by co-delivery of a COX-2 inhibitor and Brefeldin A for suppression of tumor metastasis. Biomater. Sci.6(8), 2144–2155 (2018).
  • Chandel D , UppalS, MehtaSK, ShuklaG. Preparation and characterization of celecoxib entrapped guar gum nanoparticles targeted for oral drug delivery against colon cancer: an in-vitro study. J. Drug Deliv. Ther.10(2-s), 14–21 (2020).
  • Huang J , XuY, XiaoHet al. Core-shell distinct nanodrug showing on-demand sequential drug release to act on multiple cell types for synergistic anticancer therapy. ACS Nano13(6), 7036–7049 (2019).
  • Uram Ł , MisiorekM, PichlaMet al. The effect of biotinylated PAMAM G3 Dendrimers conjugated with COX-2 Inhibitor (celecoxib) and PPAR-γ agonist (Fmoc-L-leucine) on human normal fibroblasts, immortalized keratinocytes and glioma cells in vitro. Molecules24(20), 3801 (2019).
  • Uram Ł , FilipowiczA, MisiorekMet al. Biotinylated PAMAM G3 dendrimer conjugated with celecoxib and/or Fmoc-L-leucine and its cytotoxicity for normal and cancer human cell lines. Eur. J. Pharm. Biopharm.124, 1–9 (2018).
  • Xv L , QianX, WangYet al. Structural modification of nanomicelles through phosphatidylcholine: the enhanced drug-loading capacity and anticancer activity of celecoxib-casein nanoparticles for the intravenous delivery of celecoxib. Nanomaterials (Basel)10(3), 451 (2020).
  • Shi L , XuL, WuCet al. Celecoxib-induced self-assembly of smart albumin-doxorubicin conjugate for enhanced cancer therapy. ACS Appl. Mater. Interfaces10(10), 8555–8565 (2018).
  • Abdelmoneem MA , MahmoudM, ZakyAet al. Decorating protein nanospheres with lactoferrin enhances oral COX-2 inhibitor/herbal therapy of hepatocellular carcinoma. Nanomedicine (Lond.)13(19), 2377–2395 (2018).
  • AbdElhamid AS , ZayedDG, HelmyMWet al. Lactoferrin-tagged quantum dots-based theranostic nanocapsules for combined COX-2 inhibitor/herbal therapy of breast cancer. Nanomedicine (Lond.)13(20), 2637–2656 (2018).
  • AbdElhamid AS , HelmyMW, EbrahimSMet al. Layer-by-layer gelatin/chondroitin quantum dots-based nanotheranostics: combined rapamycin/celecoxib delivery and cancer imaging. Nanomedicine (Lond.)13(14), 1707–1730 (2018).
  • Elzoghby AO , MostafaSK, HelmyMW, ElDemellawyMA, SheweitaSA. Superiority of aromatase inhibitor and cyclooxygenase-2 inhibitor combined delivery: hyaluronate-targeted versus PEGylated protamine nanocapsules for breast cancer therapy. Int. J. Pharm.529(1–2), 178–192 (2017).
  • Elzoghby AO , MostafaSK, HelmyMW, ElDemellawyMA, SheweitaSA. Multi-reservoir phospholipid shell encapsulating protamine nanocapsules for co-delivery of letrozole and celecoxib in breast cancer therapy. Pharm. Res.34(9), 1956–1969 (2017).
  • Liu J , ChangB, LiQet al. Redox-responsive dual drug delivery nanosystem suppresses cancer repopulation by abrogating doxorubicin-promoted cancer stemness, metastasis, and drug resistance. Adv. Sci.6(7), 1801987 (2019).
  • Zhu W , ZhaoQ, ZhengXet al. Mesoporous carbon as a carrier for celecoxib: the improved inhibition effect on MDA-MB-231 cells migration and invasion. Asian J. Pharm. Sci.9(2), 82–91 (2014).
  • Wu Y , GuW, TangJ, XuZP. Devising new lipid-coated calcium phosphate/carbonate hybrid nanoparticles for controlled release in endosomes for efficient gene delivery. J. Mater. Chem. B5(34), 7194–7203 (2017).
  • Venkatesan P , PuvvadaN, DashRet al. The potential of celecoxib-loaded hydroxyapatite-chitosan nanocomposite for the treatment of colon cancer. Biomaterials32(15), 3794–3806 (2011).
  • Mardani S , MaghsoodiM, GhanbarzadehS, NokhodchiA, YaqoubiS, HamishehkarH. Preparation and characterization of Celecoxib agglomerated nanocrystals and dry powder inhalation formulations to improve its aerosolization performance. Pharm. Sci.23(4), 278–284 (2017).
  • Jia L , GarzaM, WongHet al. Pharmacokinetic comparison of intravenous carbendazim and remote loaded carbendazim liposomes in nude mice. J. Pharm. Biomed. Anal.28(1), 65–72 (2002).
  • Malam Y , LoizidouM, SeifalianAM. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol. Sci.30(11), 592–599 (2009).
  • Sahoo SK , LabhasetwarV. Nanotech approaches to drug delivery and imaging. Drug Discov. Today8(24), 1112–1120 (2003).
  • Torchilin V . Antibody-modified liposomes for cancer chemotherapy. Expert Opin. Drug Deliv.5(9), 1003–1025 (2008).
  • Sercombe L , VeeratiT, MoheimaniF, WuSY, SoodAK, HuaS. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol.6, 286 (2015).
  • Olusanya TOB , HajAhmad RR, IbegbuDM, SmithJR, ElkordyAA. Liposomal drug delivery systems and anticancer drugs. Molecules23(4), 907 (2018).
  • Muller RH , MaderK, GohlaS. Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. Eur. J. Pharm. Biopharm.50(1), 161–177 (2000).
  • Rajabi M , MousaSA. Lipid nanoparticles and their application in nanomedicine. Curr. Pharm. Biotechnol.17(8), 662–672 (2016).
  • Pardeike J , HommossA, MullerRH. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int. J. Pharm.366(1–2), 170–184 (2009).
  • Muller RH , PetersenRD, HommossA, PardeikeJ. Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv. Drug Deliv. Rev.59(6), 522–530 (2007).
  • Iqbal MA , MdS, SahniJK, BabootaS, DangS, AliJ. Nanostructured lipid carriers system: recent advances in drug delivery. J. Drug Target.20(10), 813–830 (2012).
  • Duncan R . The dawning era of polymer therapeutics. Nat. Rev. Drug Discov.2(5), 347–360 (2003).
  • Dwivedi N , ShahJ, MishraVet al. Dendrimer-mediated approaches for the treatment of brain tumor. J. Biomater. Sci. Polym. Ed.27(7), 557–580 (2016).
  • Florendo M , FigaczA, SrinageshwarBet al. Use of polyamidoamine dendrimers in brain diseases. Molecules23(9), 2238 (2018).
  • Al-Saidan SM , KrishnaiahYS, PatroSS, SatyanaryanaV. In vitro and in vivo evaluation of guar gum matrix tablets for oral controlled release of water-soluble diltiazem hydrochloride. AAPS PharmSciTech6(1), E14–21 (2005).
  • Sinha VR , MittalBR, BhutaniKK, KumriaR. Colonic drug delivery of 5-fluorouracil: an in vitro evaluation. Int. J. Pharm.269(1), 101–108 (2004).
  • Mudgil D , BarakS, PatelA, ShahN. Partially hydrolyzed guar gum as a potential prebiotic source. Int. J. Biol. Macromol.112, 207–210 (2018).
  • Lohcharoenkal W , WangL, ChenYC, RojanasakulY. Protein nanoparticles as drug delivery carriers for cancer therapy. BioMed Res. Int.2014, 180549 (2014).
  • Kondapi AK . Targeting cancer with lactoferrin nanoparticles: recent advances. Nanomedicine (Lond.)15(21), 2071–2083 (2020).
  • Elzoghby AO , MostafaSK, HelmyMW, ElDemellawyMA, SheweitaSA. Superiority of aromatase inhibitor and cyclooxygenase-2 inhibitor combined delivery: hyaluronate-targeted versus PEGylated protamine nanocapsules for breast cancer therapy. Int. J. Pharm.529(1), 178–192 (2017).
  • Wong KH , LuA, ChenX, YangZ. Natural ingredient-based polymeric nanoparticles for cancer treatment. Molecules25(16), 3620 (2020).
  • Mateus AY , BarriasCC, RibeiroC, FerrazMP, MonteiroFJ. Comparative study of nanohydroxyapatite microspheres for medical applications. J. Biomed. Mater. Res. A86(2), 483–493 (2008).
  • Zhang S , GonsalvesKE. Preparation and characterization of thermally stable nanohydroxyapatite. J. Mater. Sci. Mater. Med.8(1), 25–28 (1997).
  • Guggi D , LangothN, HofferMH, WirthM, Bernkop-SchnurchA. Comparative evaluation of cytotoxicity of a glucosamine-TBA conjugate and a chitosan-TBA conjugate. Int. J. Pharm.278(2), 353–360 (2004).
  • Krisanapiboon A , BuranapanitkitB, OungbhoK. Biocompatability of hydroxyapatite composite as a local drug delivery system. J. Orthop. Surg. (Hong Kong)14(3), 315–318 (2006).
  • Rosenholm JM , MamaevaV, SahlgrenC, LindénM. Nanoparticles in targeted cancer therapy: mesoporous silica nanoparticles entering preclinical development stage. Nanomedicine (Lond.)7(1), 111–120 (2012).
  • She X , ChenL, YiZet al. Tailored mesoporous silica nanoparticles for controlled drug delivery: platform fabrication, targeted delivery, and computational design and analysis. Mini Rev. Med. Chem.18(11), 976–989 (2018).
  • Farooq MA , JabeenA, WangB. Formulation, optimization, and characterization of whey protein isolate nanocrystals for celecoxib delivery. J. Microencapsul. doi: 10.1080/02652048.2021.1915398 (2021) ( Epub ahead of print).
  • Jarvis M , KrishnanV, MitragotriS. Nanocrystals: a perspective on translational research and clinical studies. Bioeng. Transl. Med.4(1), 5–16 (2019).
  • Lu Y , ChenY, GemeinhartRA, WuW, LiT. Developing nanocrystals for cancer treatment. Nanomedicine (Lond.)10(16), 2537–2552 (2015).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.