164
Views
0
CrossRef citations to date
0
Altmetric
Systematic Review

In Vivo Efficacy of Meglumine Antimoniate-Loaded Nanoparticles for Cutaneous Leishmaniasis: A Systematic Review

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1505-1518 | Received 23 Mar 2021, Accepted 26 Apr 2021, Published online: 30 Jun 2021

References

  • World Health Organization . Leishmaniasis. http://www.who.int/news-room/fact-sheets/detail/leishmaniasis
  • Burza S , CroftSL, BoelaertM. Leishmaniasis. Lancet392(10151), 951–970 (2018).
  • Aronson NE , JoyaCA. Cutaneous leishmaniasis: updates in diagnosis and management. Infect. Dis. Clin. North Am.33(1), 101–117 (2019).
  • Moosavian Kalat SAM , KhamesipourA, BavarsadNet al. Use of topical liposomes containing meglumine antimoniate (glucantime) for the treatment of L. major lesion in BALB/c mice. Exp. Parasitol.143, 5–10 (2014).
  • Goto H , LaulettaLindoso JA. Cutaneous and mucocutaneous leishmaniasis. Infect. Dis. Clin. North Am.26(2), 293–307 (2012).
  • Ministry of Health of Brazil . Tegumentary leishmaniasis surveillance manual – 2017 (2017). http://bvsms.saude.gov.br/bvs/publicacoes/manual_vigilancia_leishmaniose_tegumentar.pdf
  • Kobets T , GrekovI, LipoldovaM. Leishmaniasis: prevention, parasite detection and treatment. Curr. Med. Chem.19(10), 1443–1474 (2012).
  • Kedzierski L , SakthianandeswarenA, CurtisJM, AndrewsPC, JunkPC, KedzierskaK. Leishmaniasis: current treatment and prospects for new drugs and vaccines. Curr. Med. Chem.16(5), 599–614 (2009).
  • Berbert TRN , de MelloTFP, WolfNassif Pet al. Pentavalent antimonials combined with other therapeutic alternatives for the treatment of cutaneous and mucocutaneous leishmaniasis: a systematic review. Dermatol. Res. Pract.2018, 9014726 (2018).
  • Lanza JS , FernandesFR, Corrêa-JúniorJDet al. Polarity-sensitive nanocarrier for oral delivery of Sb(V) and treatment of cutaneous leishmaniasis. Int. J. Nanomedicine11, 2305–2318 (2016).
  • Soares Reis LE , Fortesde Brito RC, de Oliviera CardosoJMet al. Mixed formulation of conventional and pegylated meglumine antimoniate-containing liposomes reduces inflammatory process and parasite burden in Leishmania infantum-infected BALB/c mice. Antimicrob. Agents Chemother.61(11), e00962–17 (2017).
  • Borborema SET , SchwendenerRA, OssoJAJ, de AndradeHFJ, do NascimentoN. Uptake and antileishmanial activity of meglumine antimoniate-containing liposomes in Leishmania (Leishmania) major-infected macrophages. Int. J. Antimicrob. Agents38(4), 341–347 (2011).
  • Khalil NM , de MattosAC, CarraroTCMM, LudwigDB, MainardesRM. Nanotechnological strategies for the treatment of neglected diseases. Curr. Pharm. Des.19(41), 7316–7329 (2013).
  • Franco AM , GrafovaI, SoaresFVet al. Nanoscaled hydrated antimony (V) oxide as a new approach to first-line antileishmanial drugs. Int. J. Nanomedicine11, 6771–6780 (2016).
  • Carvalho SH , FrézardF, PereiraNPet al. American tegumentary leishmaniasis in Brazil: a critical review of the current therapeutic approach with systemic meglumine antimoniate and short-term possibilities for an alternative treatment. Trop. Med. Int. Health24(4), 380–391 (2019).
  • Berenguer D , SosaL, AlcoverMet al. Development and characterization of a semi-solid dosage form of meglumine antimoniate for topical treatment of cutaneous leishmaniasis. Pharmaceutics11(11), 613 (2019).
  • Varshosaz J , ArbabiB, PestehchianN, SaberiS, DelavariM. Chitosan-titanium dioxide-glucantime nanoassemblies effects on promastigote and amastigote of Leishmaniamajor. Int. J. Biol. Macromol.107(Pt A), 212–221 (2018).
  • Gélvez APC , FariasLHS, PereiraVSet al. Biosynthesis, characterization and leishmanicidal activity of a biocomposite containing AgNPs-PVP-glucantime. Nanomedicine (Lond.)13(4), 373–390 (2018).
  • Moher D , ShamseerL, ClarkeMet al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev.4(1), 1 (2015).
  • Higgins JPT , AltmanDG, GøtzschePCet al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ343, d5928 (2011).
  • Clarivate Analytics . EndNote X9 Computer Program (2021). https://support.clarivate.com/Endnote/s/article/EndNote-X9?language=en_US
  • Ouzzani M , HammadyH, FedorowiczZ, ElmagarmidA. Rayyan–a web and mobile app for systematic reviews. Syst. Rev.5(1), 210 (2016).
  • Hooijmans CR , RoversMM, de VriesRBM, LeenaarsM, Ritskes-HoitingaM, LangendamMW. SYRCLE’s risk of bias tool for animal studies. BMC Med. Res. Methodol.14, 43 (2014).
  • Percie du Sert N , HurstV, AhluwaliaAet al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. Br. J. Pharmacol.177(16), 3617–3624 (2020).
  • Schünemann H , BrożekJ, GuyattG, OxmanA. Handbook for grading the quality of evidence and the strength of recommendations using the GRADE approach (2013). https://gdt.gradepro.org/app/handbook/handbook.html
  • McMaster University . GRADEpro GDT: GRADEpro guideline development tool. gradepro.org
  • Moosavian SA , FallahM, JaafariMR. The activity of encapsulated meglumine antimoniate in stearylamine-bearing liposomes against cutaneous leishmaniasis in BALB/c mice. Exp. Parasitol.200, 30–35 (2019).
  • Momeni A , RasoolianM, MomeniAet al. Development of liposomes loaded with anti-leishmanial drugs for the treatment of cutaneous leishmaniasis. J. Liposome Res.23(2), 134–144 (2013).
  • Abamor ES , AllahverdiyevAM, BagirovaM, RafailovichM. Meglumine antımoniate-TiO2@Ag nanoparticle combinations reduce toxicity of the drug while enhancing its antileishmanial effect. Acta Trop.169, 30–42 (2017).
  • Aragão Horoiwa T , CortezM, SauterIPet al. Sugar-based colloidal nanocarriers for topical meglumine antimoniate application to cutaneous leishmaniasis treatment: ex vivo cutaneous retention and in vivo evaluation. Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci.147, 105295 (2020).
  • Loeuillet C , BañulsA-L, HideM. Study of Leishmania pathogenesis in mice: experimental considerations. Parasit. Vectors9, 144 (2016).
  • Scorza BM , CarvalhoEM, WilsonME. Cutaneous manifestations of human and murine leishmaniasis. Int. J. Mol. Sci.18(6), 1296 (2017).
  • World Health Organization . Leishmaniasis Country Profiles – Turkey. http://www.who.int/leishmaniasis/burden/Leishmaniasis_Turkey/en/
  • World Health Organization . Leishmaniasis Country Profiles – Iran (Islamic Republic of). http://www.who.int/leishmaniasis/burden/Leishmaniasis_Iran/en/
  • Daleke DL , HongK, PapahadjopoulosD. Endocytosis of liposomes by macrophages: binding, acidification and leakage of liposomes monitored by a new fluorescence assay. Biochim. Biophys. Acta1024(2), 352–366 (1990).
  • Saleem K , KhursheedZ, HanoC, AnjumI, AnjumS. Applications of nanomaterials in leishmaniasis: a focus on recent advances and challenges. Nanomaterials (Basel)9(12), 1749 (2019).
  • Vaghela R , KulkarniPK, OsmaniRAM, BhosaleRR, NagaSravan Kumar Varma V. Recent advances in nanosystems and strategies for managing leishmaniasis. Curr. Drug Targets18(14), 1598–1621 (2017).
  • Banerjee A , RoychoudhuryJ, AliN. Stearylamine-bearing cationic liposomes kill Leishmania parasites through surface exposed negatively charged phosphatidylserine. J. Antimicrob. Chemother.61(1), 103–110 (2008).
  • Pal S , RavindranR, AliN. Combination therapy using sodium antimony gluconate in stearylamine-bearing liposomes against established and chronic Leishmania donovani infection in BALB/c Mice. Antimicrob. Agents Chemother.48(9), 3591–3593 (2004).
  • Roychoudhury J , SinhaR, AliN. Therapy with sodium stibogluconate in stearylamine-bearing liposomes confers cure against SSG-resistant Leishmania donovani in BALB/c mice. PLoS ONE6(3), e17376 (2011).
  • Boyd BJ . Past and future evolution in colloidal drug delivery systems. Expert Opin. Drug Deliv.5(1), 69–85 (2008).
  • Pinheiro IM , CarvalhoIP, de CarvalhoCESet al. Evaluation of the in vivo leishmanicidal activity of amphotericin B emulgel: an alternative for the treatment of skin leishmaniasis. Exp. Parasitol.164, 49–55 (2016).
  • Tempone AG , PerezD, RathS, VilarinhoAL, MortaraRA, de AndradeHFJ. Targeting Leishmania (L.) chagasi amastigotes through macrophage scavenger receptors: the use of drugs entrapped in liposomes containing phosphatidylserine. J. Antimicrob. Chemother.54(1), 60–68 (2004).
  • Geelen T , YeoSY, PaulisLEM, StarmansLWE, NicolayK, StrijkersGJ. Internalization of paramagnetic phosphatidylserine-containing liposomes by macrophages. J. Nanobiotechnology10, 37 (2012).
  • Gregoriadis G , PerrieY. Liposomes. In: Encyclopedia of Life Sciences (ELS).John Wiley & Sons Ltd, Chichester, UK (2010).
  • Panahi Y , FarshbafM, MohammadhosseiniMet al. Recent advances on liposomal nanoparticles: synthesis, characterization and biomedical applications. Artif. Cells Nanomed. Biotechnol.45(4), 788–799 (2017).
  • Abdal Dayem A , HossainMK, LeeSBet al. The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. Int. J. Mol. Sci.18(1), 120 (2017).
  • Jebali A , KazemiB. Nano-based antileishmanial agents: a toxicological study on nanoparticles for future treatment of cutaneous leishmaniasis. Toxicol. In Vitro27(6), 1896–1904 (2013).
  • Zhang X-F , LiuZ-G, ShenW, GurunathanS. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci.17(9), 1534 (2016).
  • Allahverdiyev AM , AbamorES, BagirovaM, RafailovichM. Antimicrobial effects of TiO(2) and Ag(2)O nanoparticles against drug-resistant bacteria and Leishmania parasites. Future Microbiol.6(8), 933–940 (2011).
  • Allahverdiyev AM , AbamorES, BagirovaMet al. Investigation of antileishmanial activities of Tio2@Ag nanoparticles on biological properties of L. tropica and L. infantum parasites, in vitro. Exp. Parasitol.135(1), 55–63 (2013).
  • Lappas CM . The immunomodulatory effects of titanium dioxide and silver nanoparticles. Food Chem. Toxicol.85, 78–83 (2015).
  • Abu Ammar A , NasereddinA, EreqatSet al. Amphotericin B-loaded nanoparticles for local treatment of cutaneous leishmaniasis. Drug Deliv. Transl. Res.9(1), 76–84 (2019).
  • Zhang Y , ChanJW, MorettiA, UhrichKE. Designing polymers with sugar-based advantages for bioactive delivery applications. J. Control. Release219, 355–368 (2015).
  • Durak S , ArasogluT, AtesSC, DermanS. Enhanced antibacterial and antiparasitic activity of multifunctional polymeric nanoparticles. Nanotechnology31(17), 175705 (2020).
  • Kumar R , SahooGC, PandeyKet al. Development of PLGA-PEG encapsulated miltefosine based drug delivery system against visceral leishmaniasis. Mater. Sci. Eng. C. Mater. Biol. Appl.59, 748–753 (2016).
  • Souza ACO , NascimentoAL, de VasconcelosNMet al. Activity and in vivo tracking of Amphotericin B loaded PLGA nanoparticles. Eur. J. Med. Chem.95, 267–276 (2015).
  • McConville MJ , NadererT. Metabolic pathways required for the intracellular survival of Leishmania. Annu. Rev. Microbiol.65, 543–561 (2011).
  • Naderer T , EllisMA, SerneeMFet al. Virulence of Leishmaniamajor in macrophages and mice requires the gluconeogenic enzyme fructose-1,6-bisphosphatase. Proc. Natl Acad. Sci. USA103(14), 5502–5507 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.