300
Views
0
CrossRef citations to date
0
Altmetric
Review

Topical Transdermal Chemoprevention of Breast Cancer: Where Will Nanomedical Approaches Deliver Us?

, , ORCID Icon & ORCID Icon
Pages 1713-1731 | Received 30 Mar 2021, Accepted 27 May 2021, Published online: 14 Jul 2021

References

  • Apolinário AC , SalataGC, BiancoAFR, FukumoriC, BiaginiLL. Opening the Pandora’s box of nanomedicine: there is indeed ‘plenty of room at the bottom’. Quim. Nova43(2), 212–225 (2020).
  • Barenholz YC . Doxil® – the first FDA-approved nano-drug: lessons learned. J. Control. Rel.160(2), 117–134 (2012).
  • Roche CA , TangR, CoopeySB, HughesKS. Chemoprevention acceptance and adherence in women with high-risk breast lesions. Breast J.25(2), 190–195 (2019).
  • Rotmensz N , DePalo G, FormelliFet al. Long-term tolerability of fenretinide (4-HPR) in breast cancer patients. Eur. J. Cancer Clin. Oncol.27(9), 1127–1131 (1991).
  • Prasad V , Diener-WestM. Primary chemoprevention of breast cancer: are the adverse effects too burdensome?CMAJ.187(9), 276–278 (2015).
  • Chun YS , BishtS, ChennaVet al. Intraductal administration of a polymeric nanoparticle formulation of curcumin (NanoCurc) significantly attenuates incidence of mammary tumors in a rodent chemical carcinogenesis model: implications for breast cancer chemoprevention in at-risk populations. Carcinogenesis33(11), 2242–2249 (2012).
  • Lee O , KhanSA. Novel routes for administering chemoprevention: local transdermal therapy to the breasts. Semin. Oncol.43(1), 107–115 (2016).
  • Lee O , IvancicD, AlluSet al. Local transdermal therapy to the breast for breast cancer prevention and DCIS therapy: preclinical and clinical evaluation. Cancer Chemother. Pharmacol.76(6), 1235–1246 (2015).
  • Manish M , LynnAM, MishraS. Cytochrome P450 2C9 polymorphism: effect of amino acid substitutions on protein flexibility in the presence of tamoxifen. Comput. Biol. Chem.84, 107166 (2020).
  • Apolinário AC , HauschkeL, NunesJR, LopesLB. Towards nanoformulations for skin delivery of poorly soluble API: what does indeed matter?J. Drug Deliv. Sci. Technol.60, 102045 (2020).
  • Cardoso F , KyriakidesS, OhnoSet al. Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol.30(8), 1194–1220 (2019).
  • Rosso KJ , WeissA, ThompsonAM. Are there alternative strategies for the local management of ductal carcinoma in situ?Surg. Oncol. Clin. N. Am.27(1), 69–80 (2018).
  • Jemal A , BrayF, FerlayJ. Global Cancer Statistics: 2011. CA Cancer J. Clin.61(2), 69–90 (2011).
  • Cuzick J , DeCensiA, ArunBet al. Preventive therapy for breast cancer: a consensus statement. Lancet Oncol.12(5), 496–503 (2011).
  • Wattenberg LW . Chemoprophylaxis of carcinogenesis: a review. Cancer Res.26(7), 1520–1526 (1966).
  • Moon RC , ThompsonHJ, BecciPJet al. N-(4-Hydroxyphenyl)retinamide, a new retinoid for prevention of breast cancer in the rat. Cancer Res.39(4), 1339–1346 (1979).
  • Sabichi AL , ModianoMR, LeeJJet al. Breast tissue accumulation of retinamides in a randomized short-term study of fenretinide 1. Clin. Cancer Res.9(7), 2400–2405 (2003).
  • Decensi A , ZanardiS, ArgustiA, BonanniB, CostaA, VeronesiU. Fenretinide and risk reduction of second breast cancer. Nat. Clin. Pract. Oncol.4(2), 64–65 (2007).
  • Torrisi R , DecensiA, FormelliF, CameriniT, DePalo G. Chemoprevention of breast cancer with fenretinide. Drugs61(7), 909–918 (2001).
  • Nelson HD , FuR, ZakherB, PappasMMM. Medication use for the risk reduction of primary breast cancer in women: updated evidence report and systematic review for the us preventive services task force. JAMA322(9), 868–886 (2019).
  • Padamsee TJ , HilsM, MuravevaA. Understanding low chemoprevention uptake by women at high risk of breast cancer: findings from a qualitative inductive study of women’s risk-reduction experiences. BMC Womens Health21(1), 1–12 (2021).
  • Greenwald P , KelloffG, Burch-WhitmanC, KramerBS. Chemoprevention. CA Cancer J. Clin.45(1), 31–49 (1995).
  • Howell A , AndersonAS, ClarkeRBet al. Risk determination and prevention of breast cancer. Breast Cancer Res.16(5), 1–19 (2014).
  • Penny LK , WallaceHM. The challenges for cancer chemoprevention. Chem. Soc. Rev.44(24), 8836–8847 (2015).
  • Gabriel EM , JatoiI. Breast cancer chemoprevention. Expert Rev. Anticancer Ther.12(2), 223–228 (2014).
  • Wood ME , CukeM, BedrosianI. Prevention therapy for breast cancer: how can we do better?Ann. Surg. Oncol.26, 1970–1972 (2019).
  • Heisey R , PimlottN, ClemonsM, CummingsS, DrummondN. Women’s views on chemoprevention of breast cancer. Can. Fam. Physician52(5), 624–625 (2006).
  • Visvanathan K , FabianCJ, BantugEet al. Use of endocrine therapy for breast cancer risk reduction: ASCO clinical practice guideline update. J. Clin. Oncol.37(33), 3152–3165 (2019).
  • Clarke BL , KhoslaS. New selective estrogen and androgen receptor modulators. Curr. Opin. Rheumatol.21(4), 374–379 (2009).
  • Patel HK , BihaniT. Selective estrogen receptor modulators (SERMs) and selective estrogen receptor degraders (SERDs) in cancer treatment. Pharmacol. Ther.186, 1–24 (2018).
  • Xiaob X , KangaH, HuangcdCet al. Potent aromatase inhibitors and molecular mechanism of inhibitory action. Eur. J. Med. Chem.143(1), 426–437 (2018).
  • Esber N , LeBillan F, Resche-RigonM, LoosfeltH, LombèsM, Chabbert-BuffetN. Ulipristal acetate inhibits progesterone receptor isoform a-mediated human breast cancer proliferation and BCl2-L1 expression. PLoS ONE10(10), 1–19 (2015).
  • Dziadkowiec KN , GasiorowskaE, Nowak-MarkwitzE, JankowskaA. PARP inhibitors: review of mechanisms of action and BRCA1/2 mutation targeting. Prz. Menopauzalny15(4), 215–219 (2016).
  • De Oliveira VM , AldrighiJM, RinaldiJF. Quimioprevenção do câncer de mama. Rev. Assoc. Med. Bras.52(6), 453–459 (2006).
  • Zhou G , MyersR, LiYet al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest.108(8), 1167–1174 (2001).
  • Simeone AM , TariAM. How retinoids regulate breast cancer cell proliferation and apoptosis. Cell. Mol. Life Sci.61(12), 1475–1484 (2004).
  • Gou Q , GongX, JinJ, ShiJ, HouY. Peroxisome proliferator-activated receptors (PPARs) are potential drug targets for cancer therapy. Oncotarget8(36), 60704–60709 (2017).
  • Ching MM , ReaderJ, FultonAM. Eicosanoids in cancer: prostaglandin e2 receptor 4 in cancer therapeutics and immunotherapy. Front. Pharmacol.11, 1–6 (2020).
  • de Oliveira VM , MartinsMM, LucarelliAPet al. Ciclooxigenase-2 nos carcinomas ductais de mama invasivos com componente ductal in situ e no epitélio adjacente. Rev. Bras. Ginecol. Obs.29(6), 310–316 (2007).
  • Lin NU , WinerEP. New targets for therapy in breast cancer: small molecule tyrosine kinase inhibitors. Breast Cancer Res.6(5), 204–210 (2004).
  • Ekyalongo RC , YeeD. Revisiting the IGF-1R as a breast cancer target. Precis. Oncol.1(1), 1–6 (2017).
  • Flanagan MR , ZaborEC, StempelM, ManginoDA, MorrowM, PilewskieML. Chemoprevention uptake for breast cancer risk reduction varies by risk factor. Ann. Surg. Oncol.26(7), 2127–2135 (2019).
  • Smith SG , SestakI, ForsterAet al. Factors affecting uptake and adherence to breast cancer chemoprevention: a systematic review and meta-analysis. Ann. Oncol.27(4), 575–590 (2016).
  • Ropka ME , KeimJ, PhilbrickJT. Patient decisions about breast cancer chemoprevention: a systematic review and meta-analysis. J. Clin. Oncol.28(18), 3090–3095 (2010).
  • Fisher B , CostantinoJP, WickerhamDLet al. Tamoxifen for prevention of breast cancer: report of the national surgical adjuvant breast and bowel project p-1 study and other national surgical adjuvant breast and bowel project investigators. J. Natl Cancer Inst.90(18), 1371–1388 (1998).
  • Lee O , IvancicD, ChattertonRT, RademakerAW, KhanSA. In vitro human skin permeation of endoxifen: potential for local transdermal therapy for primary prevention and carcinoma in situ of the breast. Breast Cancer Targets Ther.3(3), 61–70 (2011).
  • Goetz MP , KnoxSK, SumanVJet al. The impact of cytochrome P450 2D6 metabolism in women receiving adjuvant tamoxifen. Breast Cancer Res. Treat.101(1), 113–121 (2007).
  • Chaturvedi S , GargA. An insight of techniques for the assessment of permeation flux across the skin for optimization of topical and transdermal drug-delivery systems: “Modelling the topical and transdermal drug–delivery systems”. J. Drug Deliv. Sci. Technol.62, 102355 (2021).
  • Lee O , PilewskieM, KarlanSet al. Local transdermal delivery of telapristone acetate through breast skin, compared with oral treatment: a randomized double-blind, placebo-controlled Phase II trial. Clin. Pharmacol. Ther.109(3), 728–738 (2021).
  • Al Rabadi L , BerganR. A way forward for cancer chemoprevention: think local. Cancer Prev. Res.10(1), 14–36 (2017).
  • Rouanet P , Linares-CruzG, DravetFet al. Neoadjuvant percutaneous 4-hydroxytamoxifen decreases breast tumoral cell proliferation: a prospective controlled randomized study comparing three doses of 4-hydroxytamoxifen gel to oral tamoxifen. J. Clin. Oncol.23(13), 2980–2987 (2005).
  • Lee O , PageK, IvancicDet al. A randomized Phase II presurgical trial of transdermal 4-hydroxytamoxifen gel versus oral tamoxifen in women with ductal carcinoma in situ of the breast. Clin. Cancer Res.20(14), 3672–3682 (2014).
  • Miller JA , ThompsonPA, HakimIAet al. Safety and feasibility of topical application of limonene as a massage oil to the breast. J. Cancer Ther.03(05), 749–754 (2012).
  • Benson HAE , GriceJE, MohammedY, NamjoshiS, RobertsMS. Topical and transdermal drug delivery: from simple potions to smart technologies. Curr. Drug Deliv.16(5), 444–460 (2019).
  • Roberts MS , MohammedY, PastoreMNet al. Topical and cutaneous delivery using nanosystems. J. Control. Rel.247, 86–105 (2017).
  • Scheuplein RJ . Permeability of the skin: a review of major concepts and some new developments. J. Invest. Dermatol.67(5), 672–676 (1976).
  • Mojeiko G , de BritoM, SalataGC, LopesLB. Combination of microneedles and microemulsions to increase celecoxib topical delivery for potential application in chemoprevention of breast cancer. Int. J. Pharm.560, 365–376 (2019).
  • Wong HL , BendayanR, RauthAM, LiY, WuXY. Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Adv. Drug Deliv. Rev.59(6), 491–504 (2007).
  • Kamaly N , YameenB, WuJ, FarokhzadOC. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem. Rev.116(4), 2602–2663 (2016).
  • Li F , DouJ, WeiL, LiS, LiuJ. The selective estrogen receptor modulators in breast cancer prevention. Cancer Chemother. Pharmacol.77(5), 895–903 (2016).
  • Goetz MP , KamalA, AmesMM. Tamoxifen pharmacogenomics: the role of CYP2D6 as a predictor of drug response. Clin. Pharmacol. Ther.83(1), 160–166 (2008).
  • Day CM , HickeySM, SongY, PlushSE, GargS. Novel tamoxifen nanoformulations for improving breast cancer treatment: old wine in new bottles. Molecules25(5), 1–27 (2020).
  • Ravi PR , AdityaN, KathuriaH, MalekarS, VatsR. Lipid nanoparticles for oral delivery of raloxifene: optimization, stability, in vivo evaluation and uptake mechanism. Eur. J. Pharm. Biopharm.87(1), 114–124 (2014).
  • Elsheikh MA , ElnaggarYSR, GoharEY, AbdallahOY. Nanoemulsion liquid preconcentrates for raloxifene hydrochloride: optimization and in vivo appraisal. Int. J. Nanomed.7, 3787–3802 (2012).
  • Singh S , KushwahaAK, VuddandaPR, KarunanidhiP, SinghSK. Development and evaluation of solid lipid nanoparticles of raloxifene hydrochloride for enhanced bioavailability. Biomed Res. Int.2013 (584549) (2013).
  • Khorsand I , KashefR, GhazanfarpourM, MansouriE, DashtiS, KhadivzadehT. The beneficial and adverse effects of raloxifene in menopausal women: a mini review. J. Menopausal Med.24(3), 183 (2018).
  • Alyafee YA , AlaameryM, BawazeerSet al. Preparation of anastrozole loaded PEG-PLA nanoparticles: evaluation of apoptotic response of breast cancer cell lines. Int. J. Nanomed.13, 199–208 (2018).
  • Bhavsar D , GajjarJ, SawantK. Formulation and development of smart pH responsive mesoporous silica nanoparticles for breast cancer targeted delivery of anastrozole: in vitro and in vivo characterizations. Microporous Mesoporous Mater.279, 107–116 (2019).
  • Shavi GV , NayakUY, MaliyakkalNet al. Nanomedicine of anastrozole for breast cancer: physicochemical evaluation, in vitro cytotoxicity on BT-549 and MCF-7 cell lines and preclinical study on rat model. Life Sci.141, 143–155 (2015).
  • Zhang X , McIntoshTJ, GrinstaffMW. Functional lipids and lipoplexes for improved gene delivery. Biochimie94(1), 42–58 (2012).
  • Jayapal JJ , DhanarajS. Exemestane loaded alginate nanoparticles for cancer treatment: formulation and in vitro evaluation. Int. J. Biol. Macromol.105, 416–421 (2017).
  • Kumar A , SawantK. Encapsulation of exemestane in polycaprolactone nanoparticles: optimization, characterization, and release kinetics. Cancer Nanotechnol.4(4–5), 57–71 (2013).
  • To C , KimEH, RoyceDBet al. The PARP inhibitors, veliparib and olaparib, are effective chemopreventive agents for delaying mammary tumor development in BRCA1-deficient mice. Cancer Prev. Res.7(7), 698–707 (2014).
  • Chinnaiyan SK , KarthikeyanD, GadelaVR. Development and characterization of metformin loaded pectin nanoparticles for T2 diabetes mellitus. Pharm. Nanotechnol.6(4), 253–263 (2018).
  • Mughal T . Principal long-term adverse effects of imatinib in patients with chronic myeloid leukemia in chronic phase. Biologics4, 315–323 (2010).
  • Yang Y , PearsonRM, LeeOet al. Dendron-based micelles for topical delivery of endoxifen: a potential chemo-preventive medicine for breast cancer. Adv. Funct. Mater.24(17), 2442–2449 (2014).
  • Costa-fernandez S , MatosJKR, ScheunemannGSet al. Nanostructured lipid carriers containing chitosan or sodium alginate for co-encapsulation of antioxidants and an antimicrobial agent for potential application in wound healing. Int. J. Biol. Macromol.183, 668–680 (2021).
  • Carvalho VF , de LemosDP, VieiraCS, MigottoA, LopesLB. Potential of non-aqueous microemulsions to improve the delivery of lipophilic drugs to the skin. AAPS PharmSciTech.18(5), 1739–1749 (2017).
  • Lin YL , ChenCH, WuHYet al. Inhibition of breast cancer with transdermal tamoxifen-encapsulated lipoplex. J. Nanobiotechnology.14(1), 1–10 (2016).
  • Apolinário AC , HauschkeL, NunesJR, LopesLB. Lipid nanovesicles for biomedical applications: ‘What is in a name’?Prog. Lipid Res.82, 101096 (2021).
  • Wu X , PriceGJ, GuyRH. Disposition of nanoparticles and an associated lipophilic permeant following topical application to the skin. Mol. Pharm.6(5), 1441–1448 (2009).
  • Carvalho VFM , SalataGC, de MatosJKRet al. Optimization of composition and obtainment parameters of biocompatible nanoemulsions intended for intraductal administration of piplartine (piperlongumine) and mammary tissue targeting. Int. J. Pharm.567, 118460 (2019).
  • Teo WW , SukumarS. Combining the strength of genomics, nanoparticle technology, and direct intraductal delivery for breast cancer treatment. Breast Cancer Res.16(2), 6–8 (2014).
  • Han SM , BaekJS, KimMS, HwangSJ, ChoCW. Surface modification of paclitaxel-loaded liposomes using d-α-tocopheryl polyethylene glycol 1000 succinate: enhanced cellular uptake and cytotoxicity in multidrug resistant breast cancer cells. Chem. Phys. Lipids213, 39–47 (2018).
  • Liu J , LiJ, LiuNet al. In vitro studies of phospholipid-modified PAMAM-siMDR1 complexes for the reversal of multidrug resistance in human breast cancer cells. Int. J. Pharm.530(1–2), 291–299 (2017).
  • Pedrosa LRC , TenHagen TLM, SüssRet al. Short-chain glycoceramides promote intracellular mitoxantrone delivery from novel nanoliposomes into breast cancer cells. Pharm. Res.32(4), 1354–1367 (2015).
  • Ni L , LiY. X. Anti-human epidermal growth factor receptor 2 single-chain fv fragment-decorated dm1 nanoparticles for specific targeting of human epidermal growth factor receptor 2-positive breast tumor cells. J. Biomed. Nanotechnol.17(3), 447–455 (2021).
  • Yang W , VeroniainaH, QiX, ChenP, LiF, KePC. Soft and condensed nanoparticles and nanoformulations for cancer drug delivery and repurpose. Adv. Ther.3(1), 1900102 (2020).
  • Pepe D , CarvalhoVFM, McCallM, DeLemos DP, LopesLB. Transportan in nanocarriers improves skin localization and antitumor activity of paclitaxel. Int. J. Nanomed.11, 2009–2019 (2016).
  • Giacone DV , DartoraVFMC, de MatosJKRet al. Effect of nanoemulsion modification with chitosan and sodium alginate on the topical delivery and efficacy of the cytotoxic agent piplartine in 2D and 3D skin cancer models. Int. J. Biol. Macromol.165, 1055–1065 (2020).
  • Paolino D , CeliaC, TrapassoE, CilurzoF, FrestaM. Paclitaxel-loaded ethosomes®: potential treatment of squamous cell carcinoma, a malignant transformation of actinic keratoses. Eur. J. Pharm. Biopharm.81(1), 102–112 (2012).
  • Carvalho VFM , MigottoA, GiaconeDVet al. Co-encapsulation of paclitaxel and C6 ceramide in tributyrin-containing nanocarriers improve co-localization in the skin and potentiate cytotoxic effects in 2D and 3D models. Eur. J. Pharm. Sci.109, 131–143 (2017).
  • Haque T , RahmanKM, ThurstonDE, HadgraftJ, LaneME. Topical therapies for skin cancer and actinic keratosis. Eur. J. Pharm. Sci.77, 279–289 (2015).
  • Bathara M , DateT, ChaudhariD, GhadiR, KucheK, JainS. Exploring the promising potential of high permeation vesicle-mediated localized transdermal delivery of docetaxel in breast cancer to overcome the limitations of systemic chemotherapy. Mol. Pharm.17(7), 2473–2486 (2020).
  • Kurtz SL , LawsonLB. Liposomes enhance dye localization within the mammary ducts of porcine nipples. Mol. Pharm.16(4), 1703–1713 (2019).
  • Sundralingam U , ChakravarthiS, RadhakrishnanAK, MuniyandyS, PalanisamyUD. Efficacy of emu oil transfersomes for local transdermal delivery of 4-OH tamoxifen in the treatment of breast cancer. Pharmaceutics12(9), 1–19 (2020).
  • Haq A , ChandlerM, Michniak-kohnB. Solubility-physicochemical-thermodynamic theory of penetration enhancer mechanism of action. Int. J. Pharm.575, 118920 (2020).
  • Li Y , SongJ, TianNet al. Improving oral bioavailability of metformin hydrochloride using water-in-oil microemulsions and analysis of phase behavior after dilution. Int. J. Pharm.473(1–2), 316–325 (2014).
  • McClements DJ . Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter.8(6), 1719–1729 (2012).
  • Lopes LB . Overcoming the cutaneous barrier with microemulsions. Pharmaceutics6(1), 52–77 (2014).
  • Nastiti CMRR , PontoT, AbdE, GriceJE, BensonHAE, RobertsMS. Topical nano and microemulsions for skin delivery. Pharmaceutics9(37), 1–25 (2017).
  • Cevc G , VierlU. Nanotechnology and the transdermal route: a state of the art review and critical appraisal. J. Control. Rel.141(3), 277–299 (2010).
  • Shakeel F , BabootaS, AhujaA, AliJ, ShafiqS. Skin permeation mechanism and bioavailability enhancement of celecoxib from transdermally applied nanoemulsion. J. Nanobiotechnol.6, 1–11 (2008).
  • Shakeel F , BabootaS, AhujaA, AliJ, ShafiqS. Celecoxib nanoemulsion: skin permeation mechanism and bioavailability assessment. J. Drug Target16(10), 733–740 (2008).
  • Migotto A , CarvalhoVFM, SalataGCet al. Multifunctional nanoemulsions for intraductal delivery as a new platform for local treatment of breast cancer. Drug Deliv.25(1), 654–667 (2018).
  • Subongkot T . Combined effect of sonophoresis and a microemulsion on the dermal delivery of celecoxib. Drug Deliv.27(1), 1087–1093 (2020).
  • Subongkot T , SirirakT. Development and skin penetration pathway evaluation of microemulsions for enhancing the dermal delivery of celecoxib. Colloids Surfaces B Biointerfaces193, 111103 (2020).
  • Santonocito M , ZappullaC, ViolaSet al. Assessment of a new nanostructured microemulsion system for ocular delivery of sorafenib to posterior segment of the eye. Int. J. Mol. Sci.22(9), 4404 (2021).
  • Shahraeini SS , AkbariJ, SaeediMet al. Atorvastatin Solid lipid nanoparticles as a promising approach for dermal delivery and an anti-inflammatory agent. AAPS PharmSciTech.21(7), 1–10 (2020).
  • Passos JS , de MartinoLC, DartoraVFC, de AraujoGLB, IshidaK, LopesLB. Development, skin targeting and antifungal efficacy of topical lipid nanoparticles containing itraconazole. Eur. J. Pharm. Sci.149, 105296 (2020).
  • Müller RH , RadtkeM, WissingSA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Deliv. Rev.1, 131–155 (2002).
  • Gohla S , MaK, MuRH. Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. Eur. J. Pharm. Biopharm.50, 161–177 (2000).
  • Haider M , AbdinSM, KamalL, OriveG. Nanostructured lipid carriers for delivery of chemotherapeutics: a review. Pharmaceutics12(3), 288 (2020).
  • Labouta HI , El-KhordaguiLK, KrausT, SchneiderM. Mechanism and determinants of nanoparticle penetration through human skin. Nanoscale3(12), 4989–4999 (2011).
  • Patzelt A , RichterH, KnorrFet al. Selective follicular targeting by modification of the particle sizes. J. Control. Rel.150(1), 45–48 (2011).
  • Nirbhavane P , SharmaG, SinghBet al. Preclinical explorative assessment of celecoxib-based biocompatible lipidic nanocarriers for the management of cfa-induced rheumatoid arthritis in wistar rats. AAPS PharmSciTech19(7), 3187–3198 (2018).
  • Alves GL , TeixeiraFV, BiancaPet al. Preformulation and characterization of raloxifene - loaded lipid nanoparticles for transdermal administration. Drug Deliv. Transl. Res. doi: 10.1007/s13346-021-00949-y (2021) ( Epub ahead of print).
  • Üner M , YenerG, ErgüvenM. Design of colloidal drug carriers of celecoxib for use in treatment of breast cancer and leukemia. Mater. Sci. Eng. C.103, 109874 (2019).
  • Harivardhan Reddy L , VivekK, BakshiN, MurthyRSR. Tamoxifen citrate loaded solid lipid nanoparticles (SLN™): preparation, characterization, in vitro drug release, and pharmacokinetic evaluation. Pharm. Dev. Technol.11(2), 167–177 (2006).
  • Jones M , LerouxJ. Polymeric micelles - a new generation of colloidal drug carriers. Eur. J. Pharm. Biopharm.48(2), 101–111 (1999).
  • Deng P , TengF, ZhouFet al. Y-shaped methoxy poly(ethylene glycol)-block-poly(epsilon-caprolactone)-based micelles for skin delivery of ketoconazole: in vitro study and in vivo evaluation. Mater. Sci. Eng. C.78, 296–304 (2017).
  • Orienti I , ZuccariG, FalconiM, TetiG, IllingworthNA, VealGJ. Novel micelles based on amphiphilic branched PEG as carriers for fenretinide. Nanomedicine8(6), 880–890 (2012).
  • Has C , PanS. Vesicle formation mechanisms: an overview. J. Liposome Res.2104, 1–39 (2020).
  • Touitou E , DayanN, BergelsonL, GodinB, EliazM. Ethosomes - novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. J. Control. Rel.65(3), 403–418 (2000).
  • Jain S , JainP, UmamaheshwariRB, JainNK. Transfersomes — a novel vesicular carrier for enhanced transdermal delivery: development, characterization, and performance evaluation. Drug Dev. Ind. Pharm.29, 1013–1026 (2003).
  • Song CK , BalakrishnanP, ShimC, ChungS, ChongS, KimD. A novel vesicular carrier, transethosome, for enhanced skin delivery of voriconazole: characterization and in vitro/in vivo evaluation. Colloids Surfaces B Biointerfaces92, 299–304 (2012).
  • Babaie S , DelBakhshayesh AR, HaJW, HamishehkarH, KimKH. Invasome: a novel nanocarrier for transdermal drug delivery. Nanomaterials10(2), 1–12 (2020).
  • Duangjit S , ObataY, SanoHet al. Menthosomes, novel ultradeformable vesicles for transdermal drug delivery: optimization and characterization. Biol. Pharm. Bull.35(10), 1720–1728 (2012).
  • Cevc G , BlumeG. Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. Biochium. Biophys. Acta.1104(1), 226–232 (1992).
  • Tiwari R , PathakK. Statins therapy: a review on conventional and novel formulation approaches. J. Pharm. Pharmacol.63(8), 983–998 (2011).
  • Mahmoud MO , AboudHM, HassanAH, AliAA, JohnstonTP. Transdermal delivery of atorvastatin calcium from novel nanovesicular systems using polyethylene glycol fatty acid esters: ameliorated effect without liver toxicity in poloxamer 407-induced hyperlipidemic rats. J. Control. Rel.254, 10–22 (2017).
  • Mahmood S , TaherM, MandalUK. Experimental design and optimization of raloxifene hydrochloride loaded nanotransfersomes for transdermal application. Int. J. Nanomed.9, 4331–4346 (2014).
  • Alhakamy NA , FahmyUA, AhmedOAA. Vitamin E TPGS based transferosomes augmented TAT as a promising delivery system for improved transdermal delivery of raloxifene. PLoS ONE14(12), 1–13 (2019).
  • Sarwa KK , SureshPK, DebnathM, AhmadMZ. Tamoxifen citrate loaded ethosomes for transdermal drug–delivery system: preparation and characterization. Curr. Drug Deliv.10(4), 466–476 (2013).
  • Jukanti R , SheelaS, BandariS, VeerareddyPR. Enhanced bioavailability of exemestane via proliposomes based transdermal delivery. J. Pharm. Sci.101(7), 2271–2280 (2012).
  • Payne NI , TimminsP, AmbroseCV, WardMD, RidgwayF. Proliposomes: a novel solution to an old problem. J. Pharm. Sci.75(4), 325–329 (1986).
  • Singh B , YangS, KrishnaA, SridharS. Nanoparticle formulations of poly(adp-ribose) polymerase inhibitors for cancer therapy. Front. Chem.8, 1–11 (2020).
  • Pathade AD , KommineniN, BulbakeU, ThummarMM, SamanthulaG, KhanW. Preparation and comparison of oral bioavailability for different nano-formulations of olaparib. AAPS PharmSciTech20(7), 1–13 (2019).
  • Marshall SM . 60 years of metformin use: a glance at the past and a look to the future. Diabetologia60(9), 1561–1565 (2017).
  • Yu X , JinY, DuLet al. Transdermal cubic phases of metformin hydrochloride: in silico and in vitro studies of delivery mechanisms. Mol. Pharm.15(8), 3121–3132 (2018).
  • Bragagni M , MenniniN, MaestrelliFet al. Comparative study of liposomes, transfersomes and ethosomes as carriers for improving topical delivery of celecoxib ethosomes as carriers for improving topical delivery of celecoxib. Drug Deliv.19(7), 354–361 (2012).
  • Sinha A , SureshPK. Enhanced induction of apoptosis in hacat cells by luteolin encapsulated in pegylated liposomes—role of caspase-3/caspase-14. Appl. Biochem. Biotechnol.188(1), 147–164 (2019).
  • Abidin L , MujeebM, ImamSS, AqilM, KhuranaD. Enhanced transdermal delivery of luteolin via non-ionic surfactant-based vesicle: quality evaluation and anti-arthritic assessment. Drug Deliv.23(3), 1079–1084 (2016).
  • Letchford K , BurtH. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur. J. Pharm. Biopharm.65(3), 259–269 (2007).
  • Guterres SS , AlvesMP, PohlmannAR. Polymeric nanoparticles, nanospheres and nanocapsules, for cutaneous applications. Drug Target Insights2, 147–157 (2007).
  • Alvarez-Román R , NaikA, KaliaYN, GuyRH, FessiH. Skin penetration and distribution of polymeric nanoparticles. J. Control. Rel.99(1), 53–62 (2004).
  • Gomathi T , SudhaPN, FlorenceJAK, VenkatesanJ, AnilS. Fabrication of letrozole formulation using chitosan nanoparticles through ionic gelation method. Int. J. Biol. Macromol.104, 1820–1832 (2017).
  • Graves RA , LedetGA, GlotserEY, MitchnerDM, BostanianLA, MandalTK. Formulation and evaluation of biodegradable nanoparticles for the oral delivery of fenretinide. Eur. J. Pharm. Sci.76, 1–9 (2015).
  • Yang J , LuoL, OhYet al. Sunitinib malate-loaded biodegradable microspheres for the prevention of corneal neovascularization in rats. J. Control. Rel.327(5), 456–466 (2020).
  • Taghizadeh SM , BajgholiS. A new liposomal-drug-in-adhesive patch for transdermal delivery of sodium diclofenac. J. Biomater. Nanobiotechnol.02(05), 576–581 (2011).
  • Larrañeta E , MccruddenMTC, CourtenayAJ, RyanF. Microneedles: a new frontier in nanomedicine delivery. Pharm. Res.33, 1055–1073 (2016).
  • Xi H , YangY, ZhaoDet al. Transdermal patches for site-specific delivery of anastrozole: in vitro and local tissue disposition evaluation. Int. J. Pharm.391(1–2), 73–78 (2010).
  • Regenthal R , VoskanianM, BaumannFet al. Pharmacokinetic evaluation of a transdermal anastrozole-in-adhesive formulation. Drug Des. Devel. Ther.12, 3653–3664 (2018).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.