132
Views
0
CrossRef citations to date
0
Altmetric
Review

Engineered Nanomaterials Induce Alterations in Biological Barriers: Focus on Paracellular Permeability

, & ORCID Icon
Pages 2725-2741 | Received 27 Apr 2021, Accepted 22 Oct 2021, Published online: 06 Dec 2021

References

  • Buzea C , PachecoII, RobbieK. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases2(4), MR17–71 (2007).
  • Mehra A , GuéritS, MacrezRet al. Nonionotropic action of endothelial NMDA receptors on blood–brain barrier permeability via Rho/ROCK-mediated phosphorylation of myosin. J. Neurosci.40(8), 1778–1787 (2020).
  • Du Z , QiY, HeJ, ZhongD, ZhouM. Recent advances in applications of nanoparticles in SERS in vivo imaging. Wiley. Interdiscip. Rev. Nanomed. Nanobiotechnol.13(2), e1672 (2021).
  • Fatima F , HashimA, AneesS. Efficacy of nanoparticles as nanofertilizer production: a review. Environ. Sci. Pollut. Res. Int.28(2), 1292–1303 (2021).
  • Medina-Reyes EI , Rodríguez-IbarraC, Déciga-AlcarazA, Díaz-UrbinaD, ChirinoYI, Pedraza-ChaverriJ. Food additives containing nanoparticles induce gasterotoxicity, hepatotoxicity and alterations in animal behavior: the unknown role of oxidative stress. Food. Chem. Toxicol.146, 111814 (2020).
  • Kobyliukh A , OlszowskaK, SzelugaU, PuszS. Iron oxides/graphene hybrid structures—preparation, modification, and application as fillers of polymer composites. Adv. Colloid Interface Sci.285, 102285 (2020).
  • Lan Z , YangWX. Nanoparticles and spermatogenesis: how do nanoparticles affect spermatogenesis and penetrate the blood-testis barrier. Nanomedicine (Lond)7(4), 579–596 (2012).
  • Sonaje K , ChuangEY, LinKJet al. Opening of epithelial tight junctions and enhancement of paracellular permeation by chitosan: microscopic, ultrastructural, and computed-tomographic observations. Mol. Pharm.9(5), 1271–1279 (2012).
  • Wang J , KongM, ZhouZet al. Mechanism of surface charge triggered intestinal epithelial tight junction opening upon chitosan nanoparticles for insulin oral delivery. Carbohydr. Polym.157, 596–602 (2017).
  • Coyuco JC , LiuY, TanBJ, ChiuGN. Functionalized carbon nanomaterials: exploring the interactions with Caco-2 cells for potential oral drug delivery. Int. J. Nanomedicine6, 2253–2263 (2011).
  • Farquhar MG , PaladeGE. Junctional complexes in various epithelia. J. Cell Biol.17(2), 375–412 (1963).
  • Chasiotis H , KolosovD, BuiP, KellySP. Tight junctions, tight junction proteins and paracellular permeability across the gill epithelium of fishes: a review. Respir. Physiol. Neurobiol.184(3), 269–281 (2012).
  • González-Mariscal L , QuirósM, Díaz-CoránguezM. ZO proteins and redox-dependent processes. Antioxid. Redox. Signal.15(5), 1235–1253 (2011).
  • Kapus A , SzasziK. Coupling between apical and paracellular transport processes. Biochem. Cell Biol.84(6), 870–880 (2006).
  • Cummins PM . Occludin: one protein, many forms. Mol. Cell. Biol.32(2), 242–250 (2012).
  • Hu YJ , WangYD, TanFQ, YangWX. Regulation of paracellular permeability: factors and mechanisms. Mol. Biol. Rep.40(11), 6123–6142 (2013).
  • Mahon E , SalvatiA, BaldelliBF, LynchI, DawsonKA. Designing the nanoparticle–biomolecule interface for “targeting and therapeutic delivery.”J. Control. Release161(2), 164–174 (2012).
  • Ma DD , YangWX. Engineered nanoparticles induce cell apoptosis: potential for cancer therapy. Oncotarget.7(26), 40882–40903 (2016).
  • Park EJ , BaeE, YiJet al. Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ. Toxicol. Pharmacol.30(2), 162–168 (2010).
  • Ni FD , HaoSL, YangWX. Multiple signaling pathways in Sertoli cells: recent findings in spermatogenesis. Cell. Death. Dis.10(8), 541 (2019).
  • Lui W , LeeWM, ChengCY. TGF-βs: their role in testicular function and Sertoli cell tight junction dynamics. Int. J. Androl.26(3), 147–160 (2003).
  • Williams KM , GokulanK, CernigliaCE, KhareS. Size and dose dependent effects of silver nanoparticle exposure on intestinal permeability in an in vitro model of the human gut epithelium. J. Nanobiotechnology14(1), 62 (2016).
  • Jian HJ , WuRS, LinTYet al. Super-cationic carbon quantum dots synthesized from spermidine as an eye drop formulation for topical treatment of bacterial keratitis. ACS Nano.11(7), 6703–6716 (2017).
  • Cong X , KongW. Endothelial tight junctions and their regulatory signaling pathways in vascular homeostasis and disease. Cell. Signal.66, 109485 (2020).
  • Petecchia L , SabatiniF, UsaiC, CaciE, VaresioL, RossiGA. Cytokines induce tight junction disassembly in airway cells via an EGFR-dependent MAPK/ERK1/2-pathway. Lab. Invest.92(8), 1140–1148 (2012).
  • Tjakra M , WangY, VaniaVet al. Overview of crosstalk between multiple factor of transcytosis in blood brain barrier. Front. Neurosci.13, 1436 (2020).
  • Xia W , WongEWP, MrukDD, ChengCY. TGF-β3 and TNFα perturb blood–testis barrier (BTB) dynamics by accelerating the clathrin-mediated endocytosis of integral membrane proteins: a new concept of BTB regulation during spermatogenesis. Dev. Biol.327(1), 48–61 (2009).
  • Li MW , XiaW, MrukDDet al. Tumor necrosis factor {alpha} reversibly disrupts the blood–testis barrier and impairs Sertoli-germ cell adhesion in the seminiferous epithelium of adult rat testes. J. Endocrinol.190(2), 313–329 (2006).
  • Wolf R , MatzH, OrionE, LipozencićJ. Sunscreens – the ultimate cosmetic. Acta. Dermatovenerol. Croat.11(3), 158–162 (2003).
  • Poller B , DreweJ, KrähenbühlS, HuwylerJ, GutmannH. Regulation of BCRP (ABCG2) and P-glycoprotein (ABCB1) by cytokines in a model of the human blood–brain barrier. Cell. Mol. Neurobiol.30(1), 63–70 (2010).
  • Barakat S , DemeuleM, PilorgetAet al. Modulation of p-glycoprotein function by caveolin-1 phosphorylation. J. Neurochem.101(1), 1–8 (2007).
  • McCaffrey G , StaatzWD, QuigleyCAet al. Tight junctions contain oligomeric protein assembly critical for maintaining blood–brain barrier integrity in vivo. J. Neurochem.103(6), 2540–2555 (2007).
  • Hoshi Y , UchidaY, TachikawaMet al. Oxidative stress-induced activation of Abl and Src kinases rapidly induces P-glycoprotein internalization via phosphorylation of caveolin-1 on tyrosine-14, decreasing cortisol efflux at the blood–brain barrier. J. Cereb. Blood Flow Metab.40(2), 420–436 (2020).
  • Yang IH , LeeJJ, WuPC, KuoHK, KuoYH, HuangHM. Oxidative stress enhanced the transforming growth factor-β2-induced epithelial-mesenchymal transition through chemokine ligand 1 on ARPE-19 cell. Sci. Rep.10(1), 4000 (2020).
  • Walsh S . Modulation of tight junction structure and function by cytokines. Adv. Drug Deliv. Rev.41(3), 303–313 (2000).
  • Huang Q , ZhongW, HuZ, TangX. A review of the role of cav-1 in neuropathology and neural recovery after ischemic stroke. J. Neuroinflammation15(1), 348 (2018).
  • Kuang H , YangP, YangL, AguilarZP, XuH. Size dependent effect of ZnO nanoparticles on endoplasmic reticulum stress signaling pathway in murine liver. J. Hazard. Mater.317, 119–126 (2016).
  • Meng J , ZhouX, YangJ, QuX, CuiS. Exposure to low dose ZnO nanoparticles induces hyperproliferation and malignant transformation through activating the CXCR2/NF-κB/STAT3/ERK and AKT pathways in colonic mucosal cells. Environ. Pollut.263(Pt B), 114578 (2020).
  • Sun H , JiaJ, JiangC, ZhaiS. Gold nanoparticle-induced cell death and potential applications in nanomedicine. Int. J. Mol. Sci.19(3), 754 (2018).
  • Jia L , YiyuanK, WeiZet al. Ion-shedding zinc oxide nanoparticles induce microglial BV2 cell proliferation via the ERK and Akt signaling pathways. Toxicol. Sci.https://doi.org/10.1093/toxsci/kfw241 (2017).
  • Jeong SH , KimHJ, RyuHJet al. ZnO nanoparticles induce TNF-α expression via ROS-ERK-Egr-1 pathway in human keratinocytes. J. Dermatol. Sci.72(3), 263–273 (2013).
  • Liu Y , RogelN, HaradaKet al. Nanoparticle size-specific actin rearrangement and barrier dysfunction of endothelial cells. Nanotoxicology11(7), 846–856 (2017).
  • Hao F , KuT, YangXet al. Gold nanoparticles change small extracellular vesicle attributes of mouse embryonic stem cells. Nanoscale12(29), 15631–15637 (2020).
  • Gisbert-Garzarán M , LozanoD, MatsumotoKet al. Designing mesoporous silica nanoparticles to overcome biological barriers by incorporating targeting and endosomal escape. ACS Appl. Mater. Interfaces13(8), 9656–9666 (2021).
  • Chen Z , WangX, LiaoHet al. Glycine attenuates cerebrovascular remodeling via glycine receptor alpha 2 and vascular endothelial growth factor receptor 2 after stroke. Am. J. Transl. Res.12(10), 6895–6907 (2020).
  • Hou K , ZhaoJ, WangHet al. Chiral gold nanoparticles enantioselectively rescue memory deficits in a mouse model of Alzheimer's disease. Nat. Commun.11(1), 4790 (2020).
  • Kunjachan S , KotbS, PolaRet al. Selective priming of tumor blood vessels by radiation therapy enhances nanodrug delivery. Sci. Rep.9(1), 15844 (2019).
  • Mikhailova EO . Silver nanoparticles: mechanism of action and probable bio-application. J. Funct. Biomater.11(4), 84 (2020).
  • Chaloupka K , MalamY, SeifalianAM. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends. Biotechnol.28(11), 580–588 (2010).
  • Zhang B , LiuN, LiuQS, ZhangJ, ZhouQ, JiangG. Silver nanoparticles induce size-dependent and particle-specific neurotoxicity to primary cultures of rat cerebral cortical neurons. Ecotoxicol. Environ. Saf.198, 110674 (2020).
  • Khan I , BahugunaA, KrishnanMet al. The effect of biogenic manufactured silver nanoparticles on human endothelial cells and zebrafish model. Sci. Total Environ.679, 365–377 (2019).
  • Xu L , ShaoA, ZhaoYet al. Neurotoxicity of silver nanoparticles in rat brain after intragastric exposure. J. Nanosci. Nanotechnol.15(6), 4215–4223 (2015).
  • Dan M , WenH, ShaoA, XuL. Silver nanoparticle exposure induces neurotoxicity in the rat hippocampus without increasing the blood–brain barrier permeability. J. Biomed. Nanotechnol.14(7), 1330–1338 (2018).
  • Lebda MA , SadekKM, TohamyHGet al. Potential role of α-lipoic acid and ginkgo biloba against silver nanoparticles-induced neuronal apoptosis and blood–brain barrier impairments in rats. Life Sci.212, 251–260 (2018).
  • Dąbrowska-Bouta B , SulkowskiG, Frontczak-BaniewiczMet al. Ultrastructural and biochemical features of cerebral microvessels of adult rat subjected to a low dose of silver nanoparticles. Toxicology408, 31–38 (2018).
  • Orr SE , GokulanK, BoudreauM, CernigliaCE, KhareS. Alteration in the mRNA expression of genes associated with gastrointestinal permeability and ileal TNF-α secretion due to the exposure of silver nanoparticles in Sprague–Dawley rats. J. Nanobiotechnology17(1), 63 (2019).
  • Arisha AH , AhmedMM, KamelMA, AttiaYA, HusseinMMA. Morin ameliorates the testicular apoptosis, oxidative stress, and impact on blood–testis barrier induced by photo-extracellularly synthesized silver nanoparticles. Environ. Sci. Pollut. Res. Int.26(28), 28749–28762 (2019).
  • Lin HC , HoMY, TsenCMet al. From the cover: comparative proteomics reveals silver nanoparticles alter fatty acid metabolism and amyloid beta clearance for neuronal apoptosis in a triple cell coculture model of the blood–brain barrier. Toxicol. Sci.158(1), 151–163 (2017).
  • Chen IC , HsiaoIL, LinHC, WuCH, ChuangCY, HuangYJ. Influence of silver and titanium dioxide nanoparticles on in vitro blood–brain barrier permeability. Environ. Toxicol. Pharmacol.47, 108–118 (2016).
  • Xu L , DanM, ShaoAet al. Silver nanoparticles induce tight junction disruption and astrocyte neurotoxicity in a rat blood–brain barrier primary triple coculture model. Int. J. Nanomedicine10, 6105–6118 (2015).
  • Zhang XF , ChoiYJ, HanJWet al. Differential nanoreprotoxicity of silver nanoparticles in male somatic cells and spermatogonial stem cells. Int. J. Nanomedicine10, 1335–1357 (2015).
  • Böhmert L , NiemannB, LichtensteinD, JulingS, LampenA. Molecular mechanism of silver nanoparticles in human intestinal cells. Nanotoxicology9(7), 852–860 (2015).
  • Martirosyan A , BazesA, SchneiderY. In vitro toxicity assessment of silver nanoparticles in the presence of phenolic compounds – preventive agents against the harmful effect. Nanotoxicology8(5), 573–582 (2013).
  • Zhang Y , YangWX. Tight junction between endothelial cells: the interaction between nanoparticles and blood vessels. Beilstein. J. Nanotechnol.7, 675–684 (2016).
  • He F , PengJ, DengXet al. Mechanisms of tumor necrosis factor-alpha-induced leaks in intestine epithelial barrier. Cytokine. 59(2), 264–272 (2012).
  • Dréno B , AlexisA, ChuberreB, MarinovichM. Safety of titanium dioxide nanoparticles in cosmetics. J. Eur. Acad. Dermatol. Venereol.33, 34–46 (2019).
  • Jovanović B , CvetkovićVJ, MitrovićTL. Effects of human food grade titanium dioxide nanoparticle dietary exposure on Drosophilamelanogaster survival, fecundity, pupation and expression of antioxidant genes. Chemosphere144, 43–49 (2016).
  • Baranowska-Wójcik E , SzwajgierD, OleszczukP, Winiarska-MieczanA. Effects of titanium dioxide nanoparticles exposure on human health – a review. Biol. Trace Elem. Res.193(1), 118–129 (2020).
  • Grande F , TucciP. Titanium dioxide nanoparticles: a risk for human health. Mini. Rev. Med. Chem.16(9), 762–769 (2016).
  • Shakeel M , JabeenF, ShabbirS, AsgharMS, KhanMS, ChaudhryAS. Toxicity of nano-titanium dioxide (TiO2-NP) through various routes of exposure: a review. Biol. Trace Elem. Res.172(1), 1–36 (2016).
  • Bergin IL , WitzmannFA. Nanoparticle toxicity by the gastrointestinal route: evidence and knowledge gaps. Int. J. Biomed. Nanosci. Nanotechnol.3(1–2), 163 (2013).
  • Brun E , BarreauF, VeronesiGet al. Titanium dioxide nanoparticle impact and translocation through ex vivo, in vivo and in vitro gut epithelia. Part. Fibre Toxicol.11, 13 (2014).
  • García-Rodríguez A , VilaL, CortésC, HernándezA, MarcosR. Effects of differently shaped TiO2NPs (nanospheres, nanorods and nanowires) on the in vitro model (Caco-2/HT29) of the intestinal barrier. Part. Fibre Toxicol.15(1), 33 (2018).
  • Pedata P , RicciG, MalorniLet al. In vitro intestinal epithelium responses to titanium dioxide nanoparticles. Food Res. Int.119, 634–642 (2019).
  • Guo Z , MartucciNJ, Moreno-OlivasF, TakoE, MahlerGJ. Titanium dioxide nanoparticle ingestion alters nutrient absorption in an in vitro model of the small intestine. NanoImpact5, 70–82 (2017).
  • Yao L , TangY, ChenBet al. Oral exposure of titanium oxide nanoparticles induce ileum physical barrier dysfunction via Th1/Th2 imbalance. Environ. Toxicol.35(9), 982–990 (2020).
  • Jensen DM , LøhrM, SheykhzadeMet al. Telomere length and genotoxicity in the lung of rats following intragastric exposure to food-grade titanium dioxide and vegetable carbon particles. Mutagenesis34(2), 203–214 (2019).
  • Lammel T , WassmurB, MackevicaA, ChenCL, SturveJ. Mixture toxicity effects and uptake of titanium dioxide (TiO2) nanoparticles and 3,3′,4,4′-tetrachlorobiphenyl (PCB77) in juvenile brown trout following co-exposure via the diet. Aquat. Toxicol.213, 105195 (2019).
  • Brun E , CarrièreM, MabondzoA. In vitro evidence of dysregulation of blood–brain barrier function after acute and repeated/long-term exposure to TiO2 nanoparticles. Biomaterials33(3), 886–896 (2012).
  • Disdier C , DevoyJ, CosnefroyAet al. Tissue biodistribution of intravenously administrated titanium dioxide nanoparticles revealed blood–brain barrier clearance and brain inflammation in rat. Part. Fibre Toxicol.12, 27 (2015).
  • Zhang C , ZhaiS, WuLet al. Induction of size-dependent breakdown of blood–milk barrier in lactating mice by TiO2 nanoparticles. PLoS. ONE10(4), e0122591 (2015).
  • Smallcombe CC , HarfordTJ, LinfieldDTet al. Titanium dioxide nanoparticles exaggerate respiratory syncytial virus-induced airway epithelial barrier dysfunction. Am. J. Physiol. Lung. Cell. Mol. Physiol.319(3), L481–L496 (2020).
  • Hong F , WangL, YuX, ZhouY, HongJ, ShengL. Toxicological effect of TiO2 nanoparticle-induced myocarditis in mice. Nanoscale. Res. Lett.10, 1029 (2015).
  • Ze Y , ShengL, ZhaoXet al. TiO2 nanoparticles induced hippocampal neuroinflammation in mice. PLoS. ONE9(1), e92230 (2014).
  • Hong F , WangY, ZhouYet al. Exposure to TiO2 nanoparticles induces immunological dysfunction in mouse testitis. J. Agric. Food Chem.64(1), 346–355 (2016).
  • Miller DS . Regulation of P-glycoprotein and other ABC drug transporters at the blood–brain barrier. Trends Pharmacol. Sci.31(6), 246–254 (2010).
  • Bauer B , HartzAMS, MillerDS. Tumor necrosis factor α and endothelin-1 increase P-glycoprotein expression and transport activity at the blood–brain barrier. Mol. Pharmacol.71(3), 667–675 (2007).
  • Long Y , DuL, KimJJet al. MLCK-mediated intestinal permeability promotes immune activation and visceral hypersensitivity in PI-IBS mice. Neurogastroenterol. Motil.30(9), e13348 (2018).
  • Chen J , ZhangY, DengZ. Imbalanced shift of cytokine expression between T helper 1 and T helper 2 (Th1/Th2) in intestinal mucosa of patients with post-infectious irritable bowel syndrome. BMC Gastroenterol.12, 91 (2012).
  • Fan Z , LuJG. Zinc oxide nanostructures: synthesis and properties. J. Nanosci. Nanotechnol.5(10), 1561–1573 (2005).
  • Wang ZL . Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science312(5771), 242–246 (2006).
  • Król A , PomastowskiP, RafińskaK, Railean-PlugaruV, BuszewskiB. Zinc oxide nanoparticles: synthesis, antiseptic activity and toxicity mechanism. Adv. Colloid Interface Sci.249, 37–52 (2017).
  • Bisht G , RayamajhiS. ZnO nanoparticles: a promising anticancer agent. Nanobiomedicine3, 9 (2016).
  • Singh S . Zinc oxide nanoparticles impacts: cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity. Toxicol. Mech. Methods29(4), 300–311 (2019).
  • Xia T , LaiW, HanM, HanM, MaX, ZhangL. Dietary ZnO nanoparticles alters intestinal microbiota and inflammation response in weaned piglets. Oncotarget.8(39), 64878–64891 (2017).
  • Wang C , ZhangL, SuWet al. Zinc oxide nanoparticles as a substitute for zinc oxide or colistin sulfate: effects on growth, serum enzymes, zinc deposition, intestinal morphology and epithelial barrier in weaned piglets. PLoS. ONE12(7), e0181136 (2017).
  • Wang C , ZhangL, YingZet al. Effects of dietary zinc oxide nanoparticles on growth, diarrhea, mineral deposition, intestinal morphology, and barrier of weaned piglets. Biol. Trace Elem. Res.185(2), 364–374 (2018).
  • Teng C , JiaJ, WangZ, YanB. Oral co-exposures to zinc oxide nanoparticles and CdCl2 induced maternal-fetal pollutant transfer and embryotoxicity by damaging placental barriers. Ecotoxicol. Environ. Saf.189, 109956 (2020).
  • Wu J , LaiX, CuiGet al. Dual effects of JNK activation in blood–milk barrier damage induced by zinc oxide nanoparticles. J. Hazard. Mater.399, 122809 (2020).
  • Liu Q , XuC, JiGet al. Sublethal effects of zinc oxide nanoparticles on male reproductive cells. Toxicol. In Vitro35, 131–138 (2016).
  • Bengalli R , GualtieriM, CapassoL, UraniC, CamatiniM. Impact of zinc oxide nanoparticles on an in vitro model of the human air–blood barrier. Toxicol. Lett.279, 22–32 (2017).
  • Leibrock L , WagenerS, SinghAV, LauxP, LuchA. Nanoparticle induced barrier function assessment at liquid–liquid and air–liquid interface in novel human lung epithelia cell lines. Toxicol. Res. (Camb)8(6), 1016–1027 (2019).
  • Padmavathy N , VijayaraghavanR. Enhanced bioactivity of ZnO nanoparticles – an antimicrobial study. Sci. Technol. Adv. Mater.9(3), 035004 (2008).
  • Tang Y , XinH, YangSet al. Environmental risks of ZnO nanoparticle exposure on Microcystis aeruginosa: toxic effects and environmental feedback. Aquat. Toxicol.204, 19–26 (2018).
  • Li S , HuangC, LiaoVH. Early-life long-term exposure to ZnO nanoparticles suppresses innate immunity regulated by SKN-1/Nrf and the p38 MAPK signaling pathway in Caenorhabditis elegans. Environ. Pollut.256, 113382 (2020).
  • Liang H , ChenA, LaiXet al. Neuroinflammation is induced by tongue-instilled ZnO nanoparticles via the Ca2+-dependent NF-κB and MAPK pathways. Part. Fibre. Toxicol.15(1), 39 (2018).
  • Wu J , LaiX, CuiGet al. Dual effects of JNK activation in blood–milk barrier damage induced by zinc oxide nanoparticles. J. Hazard. Mater.399, 122809 (2020).
  • Colombo G , CortinovisC, MoschiniEet al. Cytotoxic and proinflammatory responses induced by ZnO nanoparticles in in vitro intestinal barrier. J. Appl. Toxicol.39(8), 1155–1163 (2019).
  • Aboulhoda BE , AbdeltawabDA, RashedLA, AbdAlla MF, YassaHD. Hepatotoxic effect of oral zinc oxide nanoparticles and the ameliorating role of selenium in rats: a histological, immunohistochemical and molecular study. Tissue Cell67, 101441 (2020).
  • Wang J , DengX, ZhangF, ChenD, DingW. ZnO nanoparticle-induced oxidative stress triggers apoptosis by activating JNK signaling pathway in cultured primary astrocytes. Nanoscale. Res. Lett.9(1), 117 (2014).
  • Singh P , PanditS, MokkapatiVRSS, GargA, RavikumarV, MijakovicI. Gold nanoparticles in diagnostics and therapeutics for human cancer. Int. J. Mol. Sci.19(7), 1979 (2018).
  • El-Sayed IH , HuangX, El-SayedMA. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano. Lett.5(5), 829–834 (2005).
  • Cabuzu D , CirjaA, PuiuR, GrumezescuAM. Biomedical applications of gold nanoparticles. Curr. Top. Med. Chem.15(16), 1605–1613 (2015).
  • Huang X , JainPK, El-SayedIH, El-SayedMA. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci.23(3), 217–228 (2008).
  • Li CH , ShyuMK, JhanCet al. Gold nanoparticles increase endothelial paracellular permeability by altering components of endothelial tight junctions, and increase blood–brain barrier permeability in mice. Toxicol. Sci.148(1), 192–203 (2015).
  • Setyawati MI , TayCY, BayBH, LeongDT. Gold nanoparticles induced endothelial leakiness depends on particle size and endothelial cell origin. ACS Nano.11(5), 5020–5030 (2017).
  • Xu B , ChenM, JiXet al. Metabolomic profiles delineate the potential role of glycine in gold nanorod-induced disruption of mitochondria and blood–testis barrier factors in TM-4 cells. Nanoscale6(29), 8265–8273 (2014).
  • Wu Y , AliMRK, DongBet al. Gold nanorod photothermal therapy alters cell junctions and actin network in inhibiting cancer cell collective migration. ACS Nano.12(9), 9279–9290 (2018).
  • Bittner A , DucrayAD, WidmerHR, StoffelMH, MevissenM. Effects of gold and PCL- or PLLA-coated silica nanoparticles on brain endothelial cells and the blood–brain barrier. Beilstein J. Nanotechnol.10, 941–954 (2019).
  • Kim JH , KimJH, KimK, KimMH, YuYS. Intravenously administered gold nanoparticles pass through the blood–retinal barrier depending on the particle size, and induce no retinal toxicity. Nanotechnology20(50), 505101, (2009).
  • Amina SJ , GuoB. A review on the synthesis and functionalization of gold nanoparticles as a drug delivery vehicle. Int. J. Nanomedicine15, 9823–9857 (2020).
  • Chang YN , LiangY, XiaSet al. The high permeability of nanocarriers crossing the enterocyte layer by regulation of the surface zonal pattern. Molecules25(4), 919 (2020).
  • Leve F , BonfimDP, FontesG, Morgado-DíazJA. Gold nanoparticles regulate tight junctions and improve cetuximab effect in colon cancer cells. Nanomedicine14(12), 1565–1578 (2019).
  • González-Mariscal L , TapiaR, ChamorroD. Crosstalk of tight junction components with signaling pathways. Biochim. Biophys. Acta1778(3), 729–756 (2008).
  • Jin Y , BlikslagerAT. The regulation of intestinal mucosal barrier by myosin light chain kinase/Rho kinases. Int. J. Mol. Sci.21(10), 3550 (2020).
  • He F , YinF, OmranA, YangLF, XiangQL, PengJ. PKC and RhoA signals cross-talk in Escherichia coli endotoxin induced alterations in brain endothelial permeability. Biochem. Biophys. Res. Commun.425(2), 182–188 (2012).
  • Chen CY , LiaoPL, TsaiCHet al. Inhaled gold nanoparticles cause cerebral edema and upregulate endothelial aquaporin 1 expression, involving caveolin 1 dependent repression of extracellular regulated protein kinase activity. Part. Fibre Toxicol.16(1), 37 (2019).
  • Cheng Y , DaiQ, MorshedRAet al. Blood–brain barrier permeable gold nanoparticles: an efficient delivery platform for enhanced malignant glioma therapy and imaging. Small10(24), 5137–5150 (2014).
  • Zhu S , ZengM, FengG, WuH. Platinum nanoparticles as a therapeutic agent against dextran sodium sulfate-induced colitis in mice. Int. J. Nanomedicine14, 8361–8378 (2019).
  • Zhang YL , DuanS, LiuY, WangY. The combined effect of food additive titanium dioxide and lipopolysaccharide on mouse intestinal barrier function after chronic exposure of titanium dioxide-contained feedstuffs. Part. Fibre Toxicol.18(1), 8 (2021).
  • Jia L , HaoS, YangWX. Nanoparticles induce autophagy via mTOR pathway inhibition and reactive oxygen species generation. Nanomedicine(Lond.)15(14), 1419–1435 (2020).
  • Chen L , WuL, YangWX. Nanoparticles induce apoptosis via mediating diverse cellular pathways. Nanomedicine(Lond.)13(22), 2939–2955 (2018).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.