217
Views
0
CrossRef citations to date
0
Altmetric
Perspective

Toward Enzyme-Responsive Polymersome Drug Delivery

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2679-2693 | Received 21 May 2021, Accepted 26 Oct 2021, Published online: 06 Dec 2021

References

  • Das A , MonteiroM, BaraiA, KumarS, SenS. MMP proteolytic activity regulates cancer invasiveness by modulating integrins. Sci. Rep.7(1), 1–13 (2017).
  • McKeown S , RichterAG, O'KaneC, McAuleyDF, ThickettDR. MMP expression and abnormal lung permeability are important determinants of outcome in IPF. Eur. Respir. J.33(1), 77–84 (2009).
  • Roach HI , YamadaN, CheungKSCet al. Association between the abnormal expression of matrix-degrading enzymes by human osteoarthritic chondrocytes and demethylation of specific CpG sites in the promoter regions. Arthritis Rheum.52(10), 3110–3124 (2005).
  • Wang S , JiaJ, LiuDet al. Matrix metalloproteinase expressions play important role in prediction of ovarian cancer outcome. Sci. Rep.9(1), 1–11 (2019).
  • Wang C , TelpoukhovskaiaMA, BahrBA, ChenX, GanL. Endo-lysosomal dysfunction: a converging mechanism in neurodegenerative diseases. Curr. Opin. Neurobiol.48, 52–58 (2018).
  • Smith S , LarsenJ. Linking enzyme upregulation to autophagic failure: a potential biomarker for GM1 gangliosidosis. bioRxiv. doi: 10.1101/2020.10.28.359083 (2020) (Epub ahead of print).
  • Bonam SR , WangF, MullerS. Lysosomes as a therapeutic target. Nat. Rev. Drug Discov.18(12), 923–948 (2019).
  • Liu J , ZhangB, LuoZet al. Enzyme responsive mesoporous silica nanoparticles for targeted tumor therapy in vitro and in vivo. Nanoscale7(8), 3614–3626 (2015).
  • Liu Y , DingX, LiJet al. Enzyme responsive drug delivery system based on mesoporous silica nanoparticles for tumor therapy in vivo. Nanotechnology26(14), 145102 (2015).
  • Kumar B , KulanthaivelS, MondalAet al. Mesoporous silica nanoparticle based enzyme responsive system for colon specific drug delivery through guar gum capping. Colloids Surfaces B Biointerfaces150, 352–361 (2017).
  • Li E , YangY, HaoGet al. Multifunctional magnetic mesoporous silica nanoagents for in vivo enzyme-responsive drug delivery and mr imaging. Nanotheranostics2(3), 233–242 (2018).
  • Manzano M , Vallet-RegíM. Mesoporous silica nanoparticles in nanomedicine applications. J. Mater. Sci. Mater. Med.29(5), 65 (2018).
  • Rideau E , DimovaR, SchwilleP, WurmFR, LandfesterK. Liposomes and polymersomes: a comparative review towards cell mimicking. Chem. Soc. Rev.47(23), 8572–8610 (2018).
  • Ahmed F , PakunluRI, BrannanA, BatesF, MinkoT, DischerDE. Biodegradable polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumors, inducing apoptosis in proportion to accumulated drug. J. Control Release116 (SPEC. ISS. 2), 150–158 (2006).
  • Thambi T , DeepaganVG, KoH, LeeDS, ParkJH. Bioreducible polymersomes for intracellular dual-drug delivery. J. Mater. Chem.22(41), 22028–22036 (2012).
  • Discher DE , AhmedF. Polymersomes. Annu. Rev. Biomed. Eng.8(1), 323–341 (2006).
  • Yao C , LiY, WangZ, SongC, HuX, LiuS. Cytosolic NQO1 enzyme-activated near-infrared fluorescence imaging and photodynamic therapy with polymeric vesicles. ACS Nano.14(2), 1919–1935 (2020).
  • Li Y , LiuG, WangX, HuJ, LiuS. Enzyme-responsive polymeric vesicles for bacterial-strain-selective delivery of antimicrobial agents. Angew. Chemie Int. Ed.55(5), 1760–1764 (2016).
  • Duan W , JiS, GuanYet al. Esterase-responsive polypeptide vesicles as fast-response and sustained-release nanocompartments for fibroblast-exempt drug delivery. Biomacromolecules21(12), 5093–5103 (2020).
  • Bacinello D , GarangerE, TatonD, TamKC, LecommandouxS. Tailored drug-release from multi-functional polymer-peptide hybrid vesicles. Eur. Polym. J.62, 363–373 (2015).
  • Ramezani P , AbnousK, TaghdisiSM, ZahiriM, RamezaniM, AlibolandiM. Targeted MMP-2 responsive chimeric polymersomes for therapy against colorectal cancer. Colloids Surfaces B Biointerfaces.193, 111135 (2020).
  • Lee JS , GroothuisT, CusanC, MinkD, FeijenJ. Lysosomally cleavable peptide-containing polymersomes modified with anti-EGFR antibody for systemic cancer chemotherapy. Biomaterials32(34), 9144–9153 (2011).
  • Bacinello D , GarangerE, TatonD, TamKC, LecommandouxS. Enzyme-degradable self-assembled nanostructures from polymer-peptide hybrids. Biomacromolecules15(5), 1882–1888 (2014).
  • Haas S , HainN, RaoufiMet al. Enzyme degradable polymersomes from hyaluronic acid-block-poly(ε-caprolactone) copolymers for the detection of enzymes of pathogenic bacteria. Biomacromolecules16(3), 832–841 (2015).
  • Tücking KS , GrütznerV, UngerRE, SchönherrH. Dual enzyme-responsive capsules of hyaluronic acid-block-poly(lactic acid) for sensing bacterial enzymes. Macromol. Rapid Commun.36(13), 1248–1254 (2015).
  • Porta F , EhrsamD, LengerkeC, MeyerZu Schwabedissen HE. Synthesis and characterization of PDMS-PMOXA-based polymersomes sensitive to MMP-9 for application in breast cancer. Mol. Pharm.15(11), 4884–4897 (2018).
  • Yang L , LiJ, JinY, LiM, GuZ. In vitro enzymatic degradation of the cross-linked poly(ε-caprolactone) implants. Polym. Degrad. Stab.112, 10–19 (2015).
  • Chau Y , PaderaRF, DangNM, LangerR. Antitumor efficacy of a novel polymer-peptide-drug conjugate in human tumor xenograft models. Int. J. Cancer.118(6), 1519–1526 (2006).
  • Zhong Y , ShaoL, LiY. Cathepsin B-cleavable doxorubicin prodrugs for targeted cancer therapy. Int. J. Oncol.42(2), 373–383 (2013).
  • Pramod PS , TakamuraK, ChaphekarS, BalasubramanianN, JayakannanM. Dextran vesicular carriers for dual encapsulation of hydrophilic and hydrophobic molecules and delivery into cells. Biomacromolecules13(11), 3627–3640 (2012).
  • Zhu Y , YangB, ChenS, DuJ. Polymer vesicles: mechanism, preparation, application, and responsive behavior. Prog. Polym. Sci.64, 1–22 (2017).
  • Battaglia G , RyanAJ. Bilayers and interdigitation in block copolymer vesicles. J. Am. Chem. Soc.127(24), 8757–8764 (2005).
  • Schottler S , BeckerG, WinzenSet al. Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers. Nat. Nanotechnol.11(4), 372–377 (2016).
  • Li L , RaghupathiK, SongC, PrasadP, ThayumanavanS. Self-assembly of random copolymers. Chem. Commun.50(88), 13417–13432 (2014).
  • Zhang CY , YangYQ, HuangTXet al. Self-assembled pH-responsive MPEG-b-(PLA-co-PAE) block copolymer micelles for anticancer drug delivery. Biomaterials33(26), 6273–6283 (2012).
  • Dan K , BoseN, GhoshS. Vesicular assembly and thermo-responsive vesicle-to-micelle transition from an amphiphilic random copolymer. Chem. Commun.47(46), 12491–12493 (2011).
  • Tian F , YuY, WangC, YangS. Consecutive morphological transitions in nanoaggregates assembled from amphiphilic random copolymer via water-driven micellization and light-triggered dissociation. Macromolecules41(10), 3585–3588 (2008).
  • Pangburn S , TresconyP, HellerJ. Lysozyme degradation of partially deacetylated chitin, its films and hydrogels. Biomaterials3(2), 105–108 (1982).
  • Kurita K , KajiY, MoriT, NishiyamaY. Enzymatic degradation of β-chitin: susceptibility and the influence of deacetylation. Carbohydr. Polym.42(1), 19–21 (2000).
  • Hirano S , TsuchidaH, NagaoN. N-acetylation in chitosan and the rate of its enzymic hydrolysis. Biomaterials10(8), 574–576 (1989).
  • Li S , GirardA, GarreauH, VertM. Enzymatic degradation of polylactide stereocopolymers with predominant D-lactyl contents. Polym. Degrad. Stab.71(1), 61–67 (2000).
  • Schacher FH , ElbertJ, PatraSK, YusoffSFM, WinnikMA, MannersI. Responsive vesicles from the self-assembly of crystalline-coil polyferrocenylsilane-block-poly(ethylene oxide) star-block copolymers. Chem. - A Eur. J.18(2), 517–525 (2012).
  • Croitoru-Sadger T , Leichtmann-BardoogoY, MizrahiB. A flexible polymersome system with tunable morphology and release profiles for efficient intracellular delivery. Int. J. Pharm.508(1–2), 34–41 (2016).
  • Wang K , DongHQ, WenHYet al. Novel vesicles self-assembled from amphiphilic star-armed PEG/polypeptide hybrid copolymers for drug delivery. Macromol. Biosci.11(1), 65–71 (2011).
  • Del Barrios J , OriolL, SánchezCet al. Self-assembly of linear-dendritic diblock copolymers: from nanofibers to polymersomes. J. Am. Chem. Soc.132(11), 3762–3769 (2010).
  • Jiang W , ZhouY, YanD. Hyperbranched polymer vesicles: from self-assembly, characterization, mechanisms, and properties to applications. Chem. Soc. Rev.44(12), 3874–3889 (2015).
  • Tücking KS , Handschuh-WangS, SchönherrH. Bacterial enzyme responsive polymersomes: a closer look at the degradation mechanism of PEG-block-PLA vesicles. Aust. J. Chem.67(4), 578–584 (2014).
  • Discher DE , OrtizV, SrinivasGet al. Emerging applications of polymersomes in delivery: from molecular dynamics to shrinkage of tumors. Prog. Polym. Sci.32(8–9), 838–857 (2007).
  • Sugihara S , BlanazsA, ArmesSP, RyanAJ, LewisAL. Aqueous dispersion polymerization: a new paradigm for in situ block copolymer self-assembly in concentrated solution. J. Am. Chem. Soc.133(39), 15707–15713 (2011).
  • Blanazs A , RyanAJ, ArmesSP. Predictive phase diagrams for RAFT aqueous dispersion polymerization: effect of block copolymer composition, molecular weight, and copolymer concentration. Macromolecules45(12), 5099–5107 (2012).
  • Tan J , HeJ, LiXet al. Rapid synthesis of well-defined all-acrylic diblock copolymer nano-objects: via alcoholic photoinitiated polymerization-induced self-assembly (photo-PISA). Polym. Chem.8(44), 6853–6864 (2017).
  • Shae D , BeckerKW, ChristovPet al. Endosomolytic polymersomes increase the activity of cyclic dinucleotide STING agonists to enhance cancer immunotherapy. Nat. Nanotechnol.14(3), 269–278 (2019).
  • Barnhill SA , BellNC, PattersonJP, OldsDP, GianneschiNC. Phase diagrams of polynorbornene amphiphilic block copolymers in solution. Macromolecules48(4), 1152–1161 (2015).
  • Touve MA , WrightDB, MuC, SunH, ParkC, GianneschiNC. Block copolymer amphiphile phase diagrams by high-throughput transmission electron microscopy. Macromolecules52(15), 5529–5537 (2019).
  • Liao M , LiuH, GuoH, ZhouJ. Mesoscopic structures of poly(carboxybetaine) block copolymer and poly(ethylene glycol) block copolymer in solutions. Langmuir.33(30), 7575–7582 (2017).
  • Wang Z , YinY, JiangR, LiB. Morphological transformations of diblock copolymers in binary solvents: A simulation study. Front. Phys.12(6), 128201 (2017).
  • Sun X , PeiS, WangJ, WangP, LiuZ, ZhangJ. Coarse-grained molecular dynamics simulation study on spherical and tube-like vesicles formed by amphiphilic copolymers. J. Polym. Sci. Part B Polym. Phys.55(16), 1220–1226 (2017).
  • Lin Y-L , ChangH-Y, ShengY-J, TsaoH-K. Photoresponsive polymersomes formed by amphiphilic linear–dendritic block copolymers: generation-dependent aggregation behavior. Macromolecules45(17), 7143–7156 (2012).
  • Tan H , YuC, LuZ, ZhouY, YanD. A dissipative particle dynamics simulation study on phase diagrams for the self-assembly of amphiphilic hyperbranched multiarm copolymers in various solvents. Soft Matter.13(36), 6178–6188 (2017).
  • Tan H , LiS, LiK, YuC, LuZ, ZhouY. Shape transformations of vesicles self-assembled from amphiphilic hyperbranched multiarm copolymers via simulation. Langmuir.35(21), 6929–6938 (2019).
  • Song Y , JiangR, WangZ, YinY, LiB, ShiA-C. Formation and regulation of multicompartment vesicles from cyclic diblock copolymer solutions: a simulation study. ACS Omega.5(16), 9366–9376 (2020).
  • Salomon-Ferrer R , CaseDA, WalkerRC. An overview of the amber biomolecular simulation package. Wiley Interdiscip. Rev. Comput. Mol. Sci.3(2), 198–210 (2013).
  • Eastman P , SwailsJ, ChoderaJDet al. OpenMM 7: rapid development of high performance algorithms for molecular dynamics. PLoS Comput. Biol.13(7), 1–17 (2017).
  • Anderson JA , GlaserJ, GlotzerSC. HOOMD-blue: A python package for high-performance molecular dynamics and hard particle Monte Carlo simulations. Comput. Mater. Sci.173, 109363 (2020).
  • Abraham MJ , MurtolaT, SchulzRet al. Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX.1–2, 19–25 (2015).
  • Páll S , AbrahamMJ, KutznerC, HessB, LindahlE. Tackling exascale software challenges in molecular dynamics simulations with GROMACS. In: Solving Software Challenges for Exascale.MarkidisS, LaureE ( Eds). Springer International Publishing, Cham, Switzerland, 3–27 (2015).
  • Plimpton S . Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys.117(1), 1–19 (1995).
  • LAMMPS (2021). www.lammps.org/
  • Wright DB , Ramírez-HernándezA, TouveMAet al. Enzyme-induced kinetic control of peptide-polymer micelle morphology. ACS Macro Lett.8(6), 676–681 (2019).
  • Li J , XiaoS, XuYet al. Smart asymmetric vesicles with triggered availability of inner cell-penetrating shells for specific intracellular drug delivery. ACS Appl. Mater. Interfaces9(21), 17727–17735 (2017).
  • Beltran-Villegas DJ , WesselsMG, LeeJYet al. Computational reverse-engineering analysis for scattering experiments on amphiphilic block polymer solutions. J. Am. Chem. Soc.141(37), 14916–14930 (2019).
  • Wessels MG , JayaramanA. Computational reverse-engineering analysis of scattering experiments (CREASE) on amphiphilic block polymer solutions: cylindrical and fibrillar assembly. Macromolecules54(2), 783–796 (2021).
  • NSTC . Materials genome initiative for global competitiveness. Genome (June), (2011).
  • Zatorska-Płachta M , ŁazarskiG, MaziarzUet al. Encapsulation of curcumin in polystyrene-based nanoparticles-drug loading capacity and cytotoxicity. ACS Omega.6(18), 12168–12178 (2021).
  • Zhu Q , ScottTR, TreeDR. Using reactive dissipative particle dynamics to understand local shape manipulation of polymer vesicles. Soft Matter.17(1), 24–39 (2021).
  • Nin-Hill A , RoviraC. The catalytic reaction mechanism of the β-galactocerebrosidase enzyme deficient in Krabbe disease. ACS Catal.10(20), 12091–12097 (2020).
  • Morais MAB , CoinesJ, DominguesMNet al. Two distinct catalytic pathways for GH43 xylanolytic enzymes unveiled by x-ray and QM/MM simulations. Nat. Commun.12(1), (2021).
  • Burgin T , MayesHB. Mechanism of oligosaccharide synthesis: via a mutant GH29 fucosidase. React. Chem. Eng.4(2), 402–409 (2019).
  • Bharadwaj VS , KnottBC, StåhlbergJ, BeckhamGT, CrowleyMF, HartGW. The hydrolysis mechanism of a GH45 cellulase and its potential relation to lytic transglycosylase and expansin function. J. Biol. Chem.295(14), 4477–4487 (2020).
  • Silveira RL , KnottBC, PereiraCS, CrowleyMF, SkafMS, BeckhamGT. Transition path sampling study of the feruloyl esterase mechanism. J. Phys. Chem. B.125(8), 2018–2030 (2021).
  • Bonk BM , WeisJW, TidorB. Machine learning identifies chemical characteristics that promote enzyme catalysis. J. Am. Chem. Soc.141(9), 4108–4118 (2019).
  • Discher DE . Polymer vesicles. Science297(5583), 967–973 (2002).
  • Murphy CJ , VartanianAM, GeigerFMet al. Biological responses to engineered nanomaterials: needs for the next decade. ACS Cent. Sci.1(3), 117–123 (2015).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.