1,948
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Targeting Bacteria Causing Otitis Media Using Nanosystems Containing Nonspherical Gold Nanoparticles and Ceragenins

, ORCID Icon, ORCID Icon, , , , , , , , , , & ORCID Icon show all
Pages 2657-2678 | Received 07 Oct 2021, Accepted 08 Nov 2021, Published online: 26 Nov 2021

References

  • Rettig E , TunkelDE. Contemporary concepts in management of acute otitis media in children. Otolaryngol. Clin. N. Am.47(5), 651–672 (2014).
  • Paul CR , MorenoMA. Acute otitis media. JAMA Pediatr.174(3), 308 (2020).
  • Pichichero ME . Immunologic dysfunction contributes to the otitis prone condition. J. Infect.80(6), 614–622 (2020).
  • Frost HM , BeckerLF, KnepperBCet al. Antibiotic prescribing patterns for acute otitis media for children 2 years and older. J. Pediatr.220, 109–115.e1 (2020).
  • Williams CJ , JacobsAM. The impact of otitis media on cognitive and educational outcomes. Med. J. Aust.191(S9), S69–S72 (2009).
  • Schilder AG , ChonmaitreeT, CrippsAWet al. Otitis media. Nat. Rev. Dis. Primers.2, 16063 (2016).
  • Ngo CC , MassaHM, ThorntonRB, CrippsAW. Predominant bacteria detected from the middle ear fluid of children experiencing otitis media: a systematic review. PLoS ONE11(3), e0150949 (2016).
  • Bair KL , CampagnariAA. Moraxella catarrhalis promotes stable polymicrobial biofilms with the major otopathogens. Front. Microbiol.10, 3006 (2019).
  • Silva MD , SillankorvaS. Otitis media pathogens – a life entrapped in biofilm communities. Crit. Rev. Microbiol.45(5-6), 595–612 (2019).
  • Vermee Q , CohenR, HaysCet al. Biofilm production by Haemophilus influenzae and Streptococcus pneumoniae isolated from the nasopharynx of children with acute otitis media. BMC Infect. Dis.19(1), 44 (2019).
  • Obolski U , LourençoJ, ThompsonCet al. Vaccination can drive an increase in frequencies of antibiotic resistance among nonvaccine serotypes of. Proc. Natl. Acad. Sci. USA115(12), 3102–3107 (2018).
  • Cleary D , DevineV, MorrisDet al. Pneumococcal vaccine impacts on the population genomics of non-typeable Haemophilus influenzae. Microb. Genom.4(9), (2018).
  • Kaur R , PhamM, YuKOA, PichicheroME. Rising pneumococcal antibiotic resistance in the post-13-valent pneumococcal conjugate vaccine era in pediatric isolates from a primary care setting. Clin. Infect. Dis.72(5), 797–805 (2021).
  • Marom T , Nokso-KoivistoJ, ChonmaitreeT. Viral-bacterial interactions in acute otitis media. Curr. Allergy Asthma Rep.12(6), 551–558 (2012).
  • Qureishi A , LeeY, BelfieldKet al. Update on otitis media – prevention and treatment. Infect. Drug Resist.7, 15–24 (2014).
  • Yang R , SabharwalV, OkonkwoOSet al. Treatment of otitis media by transtympanic delivery of antibiotics. Sci. Transl. Med.8(356), 356ra120 (2016).
  • Surel U , NiemirowiczK, MarzecMet al. Ceragenins – a new weapon to fight multidrug resistant bacterial infections. Med. Stud.30(3), 207–213 (2014).
  • Lai XZ , FengY, PollardJet al. Ceragenins: cholic acid-based mimics of antimicrobial peptides. Acc. Chem. Res.41(10), 1233–1240 (2008).
  • Leszczynska K , NamiotD, ByfieldFJet al. Antibacterial activity of the human host defence peptide LL-37 and selected synthetic cationic lipids against bacteria associated with oral and upper respiratory tract infections. J. Antimicrob. Chemother.68(3), 610–618 (2013).
  • Moscoso M , Esteban-TorresM, MenendezM, GarciaE. In vitro bactericidal and bacteriolytic activity of ceragenin CSA-13 against planktonic cultures and biofilms of Streptococcus pneumoniae and other pathogenic streptococci. PLoS ONE9(7), e101037 (2014).
  • Hacioglu M , HaciosmanogluE, Birteksoz-TanASet al. Effects of ceragenins and conventional antimicrobials on Candida albicans and Staphylococcus aureus mono and multispecies biofilms. Diagn. Microbiol. Infect. Dis.95(3), 114863 (2019).
  • Howell MD , StreibJE, KimBEet al. Ceragenins: a class of antiviral compounds to treat orthopox infections. J. Invest. Dermatol.129(11), 2668–2675 (2009).
  • Piktel E , PogodaK, RomanMet al. Sporicidal activity of ceragenin CSA-13 against Bacillus subtilis. Sci. Rep.7, 44452 (2017).
  • Durnas B , WnorowskaU, PogodaKet al. Candidacidal activity of selected ceragenins and human cathelicidin LL-37 in experimental settings mimicking infection sites. PLoS ONE11(6), e0157242 (2016).
  • Bucki R , NamiotDB, NamiotZet al. Salivary mucins inhibit antibacterial activity of the cathelicidin-derived LL-37 peptide but not the cationic steroid CSA-13. J. Antimicrob. Chemother.62(2), 329–335 (2008).
  • Bucki R , SostareczAG, ByfieldFJet al. Resistance of the antibacterial agent ceragenin CSA-13 to inactivation by DNA or F-actin and its activity in cystic fibrosis sputum. J. Antimicrob. Chemother.60(3), 535–545 (2007).
  • Hashemi MM , RovigJ, WeberSet al. Susceptibility of colistin-resistant, gram-negative bacteria to antimicrobial peptides and ceragenins. Antimicrob. Agents Chemother.61(8), e00292 (2017).
  • Pollard JE , SnarrJ, ChaudharyVet al. In vitro evaluation of the potential for resistance development to ceragenin CSA-13. J. Antimicrob. Chemother.67(11), 2665–2672 (2012).
  • Wnorowska U , FiedorukK, PiktelEet al. Nanoantibiotics containing membrane-active human cathelicidin LL-37 or synthetic ceragenins attached to the surface of magnetic nanoparticles as novel and innovative therapeutic tools: current status and potential future applications. J. Nanobiotechnol.18(1), 3 (2020).
  • Alkilany AM , MurphyCJ. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far?J. Nanopart. Res.12(7), 2313–2333 (2010).
  • Shamaila S , ZafarN, RiazSet al. Gold nanoparticles: an efficient antimicrobial agent against enteric bacterial human pathogen. Nanomaterials (Basel)6(4), 71 (2016).
  • Mohamed MM , FouadSA, ElshokyHAet al. Antibacterial effect of gold nanoparticles against Corynebacterium pseudotuberculosis. Int. J. Vet. Sci. Med.5(1), 23–29 (2017).
  • Khan MA , KhanMJ. Nano-gold displayed anti-inflammatory property via NF-κB pathways by suppressing COX-2 activity. Artif. Cells Nanomed. Biotechnol.46(Suppl 1.), 1149–1158 (2018).
  • Lee B , LeeDG. Synergistic antibacterial activity of gold nanoparticles caused by apoptosis-like death. J. Appl. Microbiol.127(3), 701–712 (2019).
  • Rad MR , KazemianH, YazdaniFet al. Antibacterial activity of gold nanoparticles conjugated by aminoglycosides against A. baumannii isolates from burn patients. Recent Pat. Antiinfect. Drug Discov.13(3), 256–264 (2018).
  • Kalita S , KandimallaR, SharmaKKet al. Amoxicillin functionalized gold nanoparticles reverts MRSA resistance. Mater. Sci. Eng. C Mater. Biol. Appl.61, 720–727 (2016).
  • Díez-Martínez R , García-FernándezE, ManzanoMet al. Auranofin-loaded nanoparticles as a new therapeutic tool to fight streptococcal infections. Sci. Rep.6, 19525 (2016).
  • Slomberg DL , LuY, BroadnaxADet al. Role of size and shape on biofilm eradication for nitric oxide-releasing silica nanoparticles. ACS Appl. Mater. Interfaces5(19), 9322–9329 (2013).
  • Piktel E , OściłowskaI, SuprewiczŁet al. ROS-mediated apoptosis and autophagy in ovarian cancer cells treated with peanut-shaped gold nanoparticles. Int. J. Nanomedicine16, 1993–2011 (2021).
  • Penders J , StolzoffM, HickeyDJet al. Shape-dependent antibacterial effects of non-cytotoxic gold nanoparticles. Int. J. Nanomedicine12, 2457–2468 (2017).
  • Piktel E , SuprewiczŁ, DepciuchJet al. Varied-shaped gold nanoparticles with nanogram killing efficiency as potential antimicrobial surface coatings for the medical devices. Sci. Rep.11(1), 12546 (2021).
  • Piktel E , SuprewiczŁ, DepciuchJet al. Rod-shaped gold nanoparticles exert potent candidacidal activity and decrease the adhesion of fungal cells. Nanomedicine (Lond.)15(28), 2733–2752 (2020).
  • Chmielewska SJ , SkłodowskiK, DepciuchJet al. Bactericidal properties of rod-, peanut-, and star-shaped gold nanoparticles coated with ceragenin CSA-131 against multidrug-resistant bacterial strains. Pharmaceutics13(3), 425 (2021).
  • Ding B , GuanQ, WalshJPet al. Correlation of the antibacterial activities of cationic peptide antibiotics and cationic steroid antibiotics. J. Med. Chem.45(3), 663–669 (2002).
  • Rodriguez-Carvajal J . FULLPROF: a program for rietveld refinement and pattern matching analysis. In: Abstracts of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr.Toulouse, France, 127 (1990).
  • Jorgensen JH , MaherLA, HowellAW. Use of Haemophilus test medium for broth microdilution antimicrobial susceptibility testing of Streptococcus pneumoniae. J. Clin. Microbiol.28(3), 430–434 (1990).
  • Durnas B , PiktelE, WatekMet al. Anaerobic bacteria growth in the presence of cathelicidin LL-37 and selected ceragenins delivered as magnetic nanoparticles cargo. BMC Microbiol.17(1), 167 (2017).
  • Chai TJ , ChaiTC. Bactericidal activity of cerumen. Antimicrob. Agents Chemother.18(4), 638–641 (1980).
  • Wnorowska U , PiktelE, DurnaśBet al. Use of ceragenins as a potential treatment for urinary tract infections. BMC Infect Dis.19(1), 369 (2019).
  • Piktel E , WnorowskaU, CieślukMet al. Inhibition of inflammatory response in human keratinocytes by magnetic nanoparticles functionalized with PBP10 peptide derived from the PIP2-binding site of human plasma gelsolin. J. Nanobiotechnol.17(1), 22 (2019).
  • Suh I , OhtaH, WasedaY. High-temperature thermal expansion of six metallic elements measured by dilatation method and x-ray diffraction. J. Mater. Sci.23, 757–760 (1988).
  • Sneba K , SathishkumarM, SokK, YeoungSangY. Counter ions and temperature incorporated tailoring of biogenic gold nanoparticles. Process Biochem.45(9), 1450–1458 (2010).
  • Levin CS , JaneskoBG, BardhanRet al. Chain-length-dependent vibrational resonances in alkanethiol self-assembled monolayers observed on plasmonic nanoparticle substrates. Nano Lett.6(11), 2617–2621 (2006).
  • Bazylewski P , DivigalpitiyabR, FanchiniacG. In situ Raman spectroscopy distinguishes between reversible and irreversible thiol modifications in l-cysteine. RCS Adv.7, 2964–2970 (2017).
  • Deręgowska A , DepciuchJ, WojnarowskaRet al. Study of optical properties of a glutathione capped gold nanoparticles using linker (MHDA) by Fourier transform infra red spectroscopy and surface enhanced Raman scattering. Int. J. Biol. Biomol. Agricult. Food Biotechnol. Eng.7(1), 80–83 (2013).
  • Charlé K , FrankF, SchulzeW. The optical properties of silver microcrystallites in dependence on size and the influence of the matrix environment. Berichte Bunsengesellschaft Phys. Chem.88(4), 350–354 (1984).
  • Chandekar A , SenguptaSK, WhittenJE. Thermal stability of thiol and silane monolayers: A comparative study. Appl. Surf. Sci.256(9), 2742–2749 (2010).
  • Frost HM , GerberJS, HershAL. Antibiotic recommendations for acute otitis media and acute bacterial sinusitis. Pediatr. Infect. Dis. J.38(2), 217 (2019).
  • Gerber JS , RossRK, BryanMet al. Association of broad- vs narrow-spectrum antibiotics with treatment failure, adverse events, and quality of life in children with acute respiratory tract infections. JAMA318(23), 2325–2336 (2017).
  • Leso V , FontanaL, ErcolanoML, RomanoR, IavicoliI. Opportunities and challenging issues of nanomaterials in otological fields: an occupational health perspective. Nanomedicine(Lond.)14(19), 2613–2629 (2019).
  • Ziąbka M , DziadekM, MenaszekEet al. Middle ear prosthesis with bactericidal efficacy-in vitro investigation. Molecules22(10), 1681 (2017).
  • Yu Q , LiJ, ZhangY, WangYet al. Inhibition of gold nanoparticles (AuNPs) on pathogenic biofilm formation and invasion to host cells. Sci. Rep.6, 26667 (2016).
  • Kayyali MN , BrakeL, RamseyAJet al. A novel nano-approach for targeted inner ear imaging. J. Nanomed. Nanotechnol.8(4), 2017).
  • Ahangari A , SaloutiM, HeidariZet al. Development of gentamicin-gold nanospheres for antimicrobial drug delivery to Staphylococcal infected foci. Drug Deliv.20(1), 34–39 (2013).
  • Rai A , PrabhunebA, PerryC. Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings. J. Mater. Chem.20, 6789–6798 (2010).
  • Brown AN , SmithK, SamuelsTAet al. Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus. Appl. Environ. Microbiol.78(8), 2768–2774 (2012).
  • Niemirowicz K , DurnaśB, TokajukGet al. Formulation and candidacidal activity of magnetic nanoparticles coated with cathelicidin LL-37 and ceragenin CSA-13. Sci. Rep.7(1), 4610 (2017).
  • Piktel E , ProkopI, WnorowskaUet al. Ceragenin CSA-13 as free molecules and attached to magnetic nanoparticle surfaces induce caspase-dependent apoptosis in human breast cancer cells via disruption of cell oxidative balance. Oncotarget9(31), 21904–21920 (2018).
  • Chatterjee T , ChatterjeeBK, ChakrabartiP. Modelling of growth kinetics of Vibrio cholerae in presence of gold nanoparticles: effect of size and morphology. Sci. Rep.7(1), 9671 (2017).
  • Perez AC , PangB, KingLBet al. Residence of Streptococcus pneumoniae and Moraxella catarrhalis within polymicrobial biofilm promotes antibiotic resistance and bacterial persistence in vivo. Pathog. Dis.70(3), 280–288 (2014).
  • Epand RF , PollardJE, WrightJOet al. Depolarization, bacterial membrane composition, and the antimicrobial action of ceragenins. Antimicrob. Agents Chemother.54(9), 3708–3713 (2010).
  • Slavin YN , AsnisJ, HafeliUO, BachH. Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J. Nanobiotechnol.15(1), 65 (2017).
  • Lee H , LeeDG. Gold nanoparticles induce a reactive oxygen species-independent apoptotic pathway in Escherichia coli. Colloids Surf. B Biointerfaces167, 1–7 (2018).
  • Rowe-Magnus DA , KaoAY, PrietoACet al. Cathelicidin peptides restrict bacterial growth via membrane perturbation and induction of reactive oxygen species. mBio10(5), e02021 (2019).
  • Eruslanov E , KusmartsevS. Identification of ROS using oxidized DCFDA and flow-cytometry. Methods Mol. Biol.594, 57–72 (2010).
  • Dwyer DJ , BelenkyPA, YangJHet al. Antibiotics induce redox-related physiological alterations as part of their lethality. Proc. Natl. Acad. Sci. USA111(20), E2100–E2109 (2014).
  • Zhao X , DrlicaK. Reactive oxygen species and the bacterial response to lethal stress. Curr. Opin. Microbiol.21, 1–6 (2014).
  • Ortiz-Benitez EA , Carrillo-MoralesM, Velázquez-GuadarramaNet al. Inclusion bodies and pH lowering: as an effect of gold nanoparticles in Streptococcus pneumoniae. Metallomics7(7), 1173–1179 (2015).
  • Ortiz-Benítez EA , Velázquez-GuadarramaN, DuránFigueroa NVet al. Antibacterial mechanism of gold nanoparticles on Streptococcus pneumoniae. Metallomics11(7), 1265–1276 (2019).
  • Zheng K , SetyawatiMI, LeongDT, XieJ. Antimicrobial gold nanoclusters. ACS Nano11(7), 6904–6910 (2017).
  • Pericone CD , OverwegK, HermansPW, WeiserJN. Inhibitory and bactericidal effects of hydrogen peroxide production by Streptococcus pneumoniae on other inhabitants of the upper respiratory tract. Infect. Immun.68(7), 3990–3997 (2000).
  • Hoopman TC , LiuW, JoslinSNet al. Identification of gene products involved in the oxidative stress response of Moraxella catarrhalis. Infect. Immun.79(2), 745–755 (2011).
  • Borrill ZL , RoyK, SinghD. Exhaled breath condensate biomarkers in COPD. Eur. Respir. J.32(2), 472–486 (2008).
  • Kalyanaraman B , Darley-UsmarV, DaviesKJet al. Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radic. Biol. Med.52(1), 1–6 (2012).
  • Niemirowicz K , SurelU, WilczewskaAZet al. Bactericidal activity and biocompatibility of ceragenin-coated magnetic nanoparticles. J. Nanobiotechnology13(1), 32 (2015).
  • Durnaś B , WnorowskaU, PogodaKet al. Candidacidal activity of selected ceragenins and human cathelicidin LL-37 in experimental settings mimicking infection sites. PLoS ONE11(6), e0157242 (2016).
  • Schwaab M , GurrA, NeumannAet al. Human antimicrobial proteins in ear wax. Eur. J. Clin. Microbiol. Infect. Dis.30(8), 997–1004 (2011).
  • Leszczyńska K , NamiotA, CruzKet al. Potential of ceragenin CSA-13 and its mixture with pluronic F-127 as treatment of topical bacterial infections. J. Appl. Microbiol.110(1), 229–238 (2011).
  • Kim JK , ChoJH. Change of external auditory canal pH in acute otitis externa. Ann. Otol. Rhinol. Laryngol.118(11), 769–772 (2009).
  • Sulaiman GM , WaheebHM, JabirMSet al. Hesperidin loaded on gold nanoparticles as a drug delivery system for a successful biocompatible, anti-cancer, anti-inflammatory and phagocytosis inducer model. Sci. Rep.10(1), 9362 (2020).
  • Farooq MU , NovosadV, RozhkovaEAet al. Gold nanoparticles-enabled efficient dual delivery of anticancer therapeutics to HeLa cells. Sci. Rep.8(1), 2907 (2018).
  • Cheheltani R , EzzibdehRM, ChhourPet al. Tunable, biodegradable gold nanoparticles as contrast agents for computed tomography and photoacoustic imaging. Biomaterials102, 87–97 (2016).
  • Raynov AM , ChoungYH, ParkHYet al. Establishment and characterization of an In vitro model for cholesteatoma. Clin. Exp. Otorhinolaryngol.1(2), 86–91 (2008).
  • von Witzleben M , StoppeT, AhlfeldTet al. Biomimetic tympanic membrane replacement made by melt electrowriting. Adv. Healthc. Mater.10(10), e2002089 (2021).
  • Ranakusuma RW , McCulloughAR, SafitriEDet al. Oral prednisolone for acute otitis media in children: a pilot, pragmatic, randomised, open-label, controlled study (OPAL study). Pilot Feasibility Stud.4, 146 (2020).