308
Views
3
CrossRef citations to date
0
Altmetric
Review

Nanoparticulate Strategies for The Delivery of miRNA Mimics and Inhibitors in Anticancer Therapy and its Potential Utility in Oral Submucous Fibrosis

ORCID Icon, , , & ORCID Icon
Pages 181-195 | Received 14 Oct 2021, Accepted 01 Dec 2021, Published online: 11 Jan 2022

References

  • Peng Y, Croce CM. The role of MicroRNAs in human cancer. Signal Transduct. Target. Ther. 1, 15004 (2016).
  • Chen Y, Gao DY, Huang L. In vivo delivery of miRNAs for cancer therapy: challenges and strategies. Adv. Drug Deliv. Rev. 81, 128–141 (2015).
  • Nakato G, Hase K, Sato T et al. Epithelium-intrinsic microRNAs contribute to mucosal immune homeostasis by promoting M-cell maturation. PLoS ONE 11(3), e0150379 (2016).
  • Belcheva A. MicroRNAs at the epicenter of intestinal homeostasis. BioEssays 39(3), 1600200 (2017).
  • Xie H, Lim B, Lodish HF. MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes 58(5), 1050–1057 (2009).
  • Yang D, Wan X, Dennis AT et al. MicroRNA biophysically modulates cardiac action potential via directly binding to ion channel. Circulation 143(16), 1597–1613 (2021).
  • Michael IP, Saghafinia S, Hanahan D. A set of microRNAs coordinately controls tumorigenesis, invasion, and metastasis. Proc. Natl Acad. Sci. USA 116(48), 24184–24195 (2019).
  • Ying L, Du L, Zou R et al. Development of a serum miRNA panel for detection of early stage non-small cell lung cancer. Proc. Natl Acad. Sci. USA 117(40), 25036–25042 (2020).
  • Hayes J, Peruzzi PP, Lawler S. MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol. Med. 20(8), 460–9 (2014).
  • Berindan-Neagoe I, Monroig P del C, Pasculli B, Calin GA. MicroRNAome genome: a treasure for cancer diagnosis and therapy. CA Cancer J. Clin. 64(5), 311–336 (2014).
  • Fan J, Feng Y, Zhang R et al. A simplified system for the effective expression and delivery of functional mature microRNAs in mammalian cells. Cancer Gene Ther. 27(6), 424–437 (2019).
  • Saraiva C, Talhada D, Rai A et al. MicroRNA-124-loaded nanoparticles increase survival and neuronal differentiation of neural stem cells in vitro but do not contribute to stroke outcome in vivo. PLoS ONE 13(3), e0193609 (2018).
  • Li M, Tang X, Liu X et al. Targeted miR-21 loaded liposomes for acute myocardial infarction. J. Mater. Chem. B 8(45), 10384–10391 (2020).
  • Zhang X, Li Y, Chen YE, Chen J, Ma PX. Cell-free 3D scaffold with two-stage delivery of miRNA-26a to regenerate critical-sized bone defects. Nat. Commun. 7(1), 1–15 (2016).
  • Chauhan N, Jaggi M, Chauhan SC, Yallapu MM. COVID-19: fighting the invisible enemy with microRNAs. Expert Rev. Anti. Infect. Ther. 19(2), 137–145 (2021).
  • Fani M, Zandi M, Ebrahimi S, Soltani S, Abbasi S. The role of miRNAs in COVID-19 disease. Future Virol. 16(4), 301–306 (2021).
  • Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov. 16, 203–222 (2017).
  • Zhang Y, Wang Z, Gemeinhart RA. Progress in microRNA delivery. J. Control Release 172(3), 962–974 (2013).
  • O’Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol. (Lausanne) 9, 402 (2018).
  • Rooij E, Kauppinen S. Development of micro RNA therapeutics is coming of age. EMBO Mol. Med. 6(7), 851–864 (2014).
  • Segal M, Slack FJ. Challenges identifying efficacious miRNA therapeutics for cancer. Expert Opin. Drug Discov. 15(9), 987–992 (2020).
  • Ylösmäki L, Polini B, Carpi S et al. Harnessing therapeutic viruses as a delivery vehicle for RNA-based therapy. PLoS ONE 14(10), e0224072 (2019).
  • Hanna J, Hossain GS, Kocerha J. The potential for microRNA therapeutics and clinical research. Front. Genet. 10, 478 (2019).
  • Sharma M, Radhakrishnan R. Revisiting and revising the definition of oral submucous fibrosis. Oral Oncol. 92, 94 (2019).
  • Rao NR, Villa A, More CB, Jayasinghe RD, Kerr AR, Johnson NW. Oral submucous fibrosis: a contemporary narrative review with a proposed inter-professional approach for an early diagnosis and clinical management. J. Otolaryngol. Head Neck Surg. 49(1), 1–11 (2020).
  • Sharma M, Hunter KD, Fonseca FP, Radhakrishnan R. Emerging role of cellular senescence in the pathogenesis of oral submucous fibrosis and its malignant transformation. Head Neck 43(10), 3153–3164 (2021).
  • Bhambal AM, Bhambal A, Shukla US, Dhingra A. Effectiveness of pentoxifylline in the treatment of oral submucous fibrosis patients: a case-control study. Appl. Cancer Res. 39(1), 1–9 (2019).
  • Rajendran R, Rani V, Shaikh S. Pentoxifylline therapy: a new adjunct in the treatment of oral submucous fibrosis. Indian J. Dent. Res. 17(4), 190–198 (2006).
  • Gupta D, Sharma SC. Oral submucous fibrosis--a new treatment regimen. J. Oral Maxillofac. Surg. 46(10), 830–833 (1988).
  • Tilakaratne WM, Ekanayaka RP, Herath M, Jayasinghe RD, Sitheeque M, Amarasinghe H. Intralesional corticosteroids as a treatment for restricted mouth opening in oral submucous fibrosis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 122(2), 224–231 (2016).
  • Kakar PJ, Puri RK, Venkatachalam VP. Oral submucous fibrosis--treatment with hyalase. J. Laryngol. Otol. 99(1), 57–60 (1985).
  • Chole RH, Gondivkar SM, Gadbail AR et al. Review of drug treatment of oral submucous fibrosis. Oral Oncol. 48(5), 393–398 (2012).
  • ClinicalTrials.gov. NCT04476420. Comparative effect of Nigella Sativa and conventional management for OSMF. https://clinicaltrials.gov/ct2/show/NCT04476420.
  • Bhadage CJ, Umarji HR, Shah K, Välimaa H. Vasodilator isoxsuprine alleviates symptoms of oral submucous fibrosis. Clin. Oral Investig. 17, 1375–1382 (2013).
  • Maher R, Aga P, Johnson NW, Sankaranarayanan R, Warnakulasuriya S. Evaluation of multiple micronutrient supplementation in the management of oral submucous fibrosis in Karachi, Pakistan. Nutr. Cancer 27(1), 41–47 (1997).
  • Krishnamoorthy B, Khan M. Management of oral submucous fibrosis by two different drug regimens: a comparative study. Dent. Res. J. (Isfahan) 10(4), 527 (2013).
  • Daga D, Singh RK, Pal US, Gurung T, Gangwar S. Efficacy of oral colchicine with intralesional hyaluronidase or triamcinolone acetonide in the Grade II oral submucous fibrosis. Natl. J. Maxillofac. Surg. 8(1), 50 (2017).
  • Kumar A, Bagewadi A, Keluskar V, Singh M. Efficacy of lycopene in the management of oral submucous fibrosis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 103(2), 207–213 (2007).
  • Anuradha A, Patil B, Asha VR. Evaluation of efficacy of aloe vera in the treatment of oral submucous fibrosis – a clinical study. J. Oral Pathol. Med. 46(1), 50–55 (2017).
  • Al-Maweri SA, Ashraf S, Lingam AS et al. Aloe vera in treatment of oral submucous fibrosis: a systematic review and meta-analysis. J. Oral Pathol. Med. 48(2), 99–107 (2019).
  • Hazarey VK, Sakrikar AR, Ganvir SM. Efficacy of curcumin in the treatment for oral submucous fibrosis - a randomized clinical trial. J. Oral Maxillofac. Pathol. 19(2), 145 (2015).
  • Al-Maweri SA. Efficacy of curcumin for management of oral submucous fibrosis: a systematic review of randomized clinical trials. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 127(4), 300–308 (2019).
  • Hsieh Y-P, Chen H-M, Lin H-Y, Yang H, Chang JZ-C. Epigallocatechin-3-gallate inhibits transforming-growth-factor-β1-induced collagen synthesis by suppressing early growth response-1 in human buccal mucosal fibroblasts. J. Formos. Med. Assoc. 116(2), 107–113 (2017).
  • Hsieh Y-P, Chen H-M, Chang JZ-C, Chiang C-P, Deng Y-T, Kuo MY-P. Arecoline stimulated early growth response-1 production in human buccal fibroblasts: suppression by epigallocatechin-3-gallate. Head Neck 37(4), 493–497 (2015).
  • Chickooree D, Zhu K, Ram V, Wu HJ, He ZJ, Zhang S. A preliminary microarray assay of the miRNA expression signatures in buccal mucosa of oral submucous fibrosis patients. J. Oral Pathol. Med. 45(9), 691–697 (2016).
  • Suzuki HI. MicroRNA control of TGF-beta signaling. Int. J. Mol. Sci. 19(7), 1901 (2018).
  • Ganju A, Khan S, Hafeez BB et al. miRNA nanotherapeutics for cancer. Drug Discov. Today 22, 424–432 (2017).
  • Zhang S, Cheng Z, Wang Y, Han T. The risks of miRNA therapeutics: in a drug target perspective. Drug Des. Devel. Ther. 15, 721–733 (2021).
  • Bonneau E, Neveu B, Kostantin E, Tsongalis GJ, De Guire V. How close are miRNAs from clinical practice? A perspective on the diagnostic and therapeutic market. EJIFCC 30(2), 114 (2019).
  • Hong DS, Kang YK, Borad M et al. Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumors. Br. J. Cancer 122(11), 1630–1637 (2020).
  • ClinicalTrials.gov. NCT03603431, Safety, tolerability, pharmacokinetics, and pharmacodynamics of MRG-110 following intradermal injection in healthy volunteers. Available from: https://clinicaltrials.gov/ct2/show/NCT03603431.
  • ClinicalTrials.gov. NCT02369198, MesomiR 1: A phase I study of TargomiRs as 2nd or 3rd line treatment for patients with recurrent MPM and NSCLC. Available from: https://clinicaltrials.gov/ct2/show/NCT02369198.
  • ClinicalTrials.gov. NCT01872936, Miravirsen in combination with telaprevir and ribavirin in null responder to pegylated-interferon alpha plus ribavirin subjects with chronic hepatitis C virus infection. Available from: https://clinicaltrials.gov/ct2/show/NCT01872936.
  • ClinicalTrials.gov. NCT02855268, study of lademirsen (SAR339375) in patients with Alport syndrome. https://clinicaltrials.gov/ct2/show/NCT02855268.
  • ClinicalTrials.gov. NCT03601052, efficacy, safety, and tolerability of remlarsen (MRG-201) following intradermal injection in subjects with a history of keloids. Available from: https://clinicaltrials.gov/ct2/show/NCT03601052.
  • ClinicalTrials.gov. NCT02580552, safety, tolerability and pharmacokinetics of MRG-106 in patients with mycosis fungoides (MF), CLL, DLBCL or ATLL. Available from: https://clinicaltrials.gov/ct2/show/NCT02580552.
  • Fu Y, Chen J, Huang Z. Recent progress in microRNA-based delivery systems for the treatment of human disease. ExRNA 1, 24 (2019).
  • Bartoszewski R, Sikorski AF. Editorial focus: understanding off-target effects as the key to successful RNAi therapy. Cell. Mol. Biol. Lett. 24, 69 (2019).
  • Seok H, Lee H, Jang ES, Chi SW. Evaluation and control of miRNA-like off-target repression for RNA interference. Cell. Mol. Life Sci. 75, 797–814 (2018).
  • Boca S, Gulei D, Zimta AA et al. Nanoscale delivery systems for microRNAs in cancer therapy. Cell. Mol. Life Sci. 77(6), 1059–1086 (2020).
  • Cui S, Wang Y, Gong Y et al. Correlation of the cytotoxic effects of cationic lipids with their headgroups. Toxicol. Res. (Camb). 7(3), 473–479 (2018).
  • Dasgupta I, Chatterjee A. Recent advances in miRNA delivery systems. Methods Protoc. 4(1), 10 (2021).
  • Desantis V, Saltarella I, Lamanuzzi A et al. MicroRNAs-based nano-strategies as new therapeutic approach in multiple myeloma to overcome disease progression and drug resistance. Int. J. Mol. Sci. 21(9), 3084 (2020).
  • Knudsen KB, Northeved H, Pramod Kumar EK et al. In vivo toxicity of cationic micelles and liposomes. Nanomedicine 11(2), 467–477 (2015).
  • Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer 17(1), 20–37 (2016).
  • Cabral H, Matsumoto Y, Mizuno K et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumors depends on size. Nat. Nanotechnol. 6(12), 815–823 (2011).
  • Manikkath J, Sumathy T, Manikkath A, Mutalik S. Delving deeper into dermal and transdermal drug delivery: factors and mechanisms associated with nanocarrier-mediated strategies. Curr. Pharm. Des. 24(27), 3210–3222 (2018).
  • Hillaireau H, Couvreur P. Nanocarriers’ entry into the cell: relevance to drug delivery. Cell. Mol. Life Sci. 66(17), 2873–2896 (2009).
  • Kim BK, Hwang GB, Seu YB, Choi JS, Jin KS, Doh KO. DOTAP/DOPE ratio and cell type determine transfection efficiency with DOTAP-liposomes. Biochim. Biophys. Acta Biomembr. 1848(10), 1996–2001 (2015).
  • Hao R, Sun B, Yang L, Ma C, Li S. RVG29-modified microRNA-loaded nanoparticles improve ischemic brain injury by nasal delivery. Drug Deliv. 27(1), 772–781 (2020).
  • Yin Y, Ornell KJ, Beliveau A, Jain A. Modulation of MicroRNAs 34a and 21 affects viability, senescence, and invasion in glioblastoma multiforme. J. Biomed. Nanotechnol. 12(9), 1782–1797 (2016).
  • Akbarzadeh A, Rezaei-Sadabady R, Davaran S et al. Liposome: classification, preparation, and applications. Nanoscale Res. Lett. 8(1), 102 (2013).
  • Baumann V, Winkler J. miRNA-based therapies: strategies and delivery platforms for oligonucleotide and non-oligonucleotide agents. Future Med. Chem. 6(17), 1967–1984 (2014).
  • Gorur A, Bayraktar R, Ivan C et al. ncRNA therapy with miRNA-22-3p suppresses the growth of triple-negative breast cancer. Mol. Ther. Nucleic Acids 23, 930–943 (2021).
  • Zhang Q, Ran R, Zhang L et al. Simultaneous delivery of therapeutic antagomirs with paclitaxel for the management of metastatic tumors by a pH-responsive anti-microbial peptide-mediated liposomal delivery system. J. Control. Release 197, 208–218 (2015).
  • Wu Y, Crawford M, Mao Y et al. Therapeutic delivery of MicroRNA-29b by cationic lipoplexes for lung cancer. Mol. Ther. Nucleic Acids 2(2), e84 (2013).
  • Lujan H, Griffin WC, Taube JH, Sayes CM. Synthesis and characterization of nanometer-sized liposomes for encapsulation and microrna transfer to breast cancer cells. Int. J. Nanomedicine 14, 5159–5173 (2019).
  • Felgner JH, Kumar R, Sridhar CN et al. Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. J. Biol. Chem. 269(4), 2550–2561 (1994).
  • Felgner PL, Gadek TR, Holm M et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl Acad. Sci. USA 84(21), 7413–7417 (1987).
  • Lee SWL, Paoletti C, Campisi M et al. MicroRNA delivery through nanoparticles. J. Control Release 313, 80–95 (2019).
  • Liu J, Meng T, Yuan M et al. MicroRNA-200c delivered by solid lipid nanoparticles enhances the effect of paclitaxel on breast cancer stem cell. Int. J. Nanomedicine 11, 6713–6725 (2016).
  • Wu Y, Crawford M, Yu B, Mao Y, Nana-Sinkam SP, Lee LJ. MicroRNA delivery by cationic lipoplexes for lung cancer therapy. Mol. Pharm. 8(4), 1381–1389 (2011).
  • Elsana H, Olusanya TOB, Carr-wilkinson J, Darby S, Faheem A, Elkordy AA. Evaluation of novel cationic gene based liposomes with cyclodextrin prepared by thin film hydration and microfluidic systems. Sci. Rep. 9(1), 1–17 (2019).
  • Nagachinta S, Bouzo BL, Vazquez-Rios AJ, Lopez R, de la Fuente M. Sphingomyelin-based nanosystems (SNs) for the development of anticancer miRNA therapeutics. Pharmaceutics 12(2), (2020).
  • Beg MS, Brenner AJ, Sachdev J et al. Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Invest. New Drugs 35(2), 180–188 (2017).
  • Moraes FC, Antunes JC, Forero Ramirez LM et al. Synthesis of cationic quaternized pullulan derivatives for miRNA delivery. Int. J. Pharm. 577, 119041 (2020).
  • Shen ZL, Xia YQ, Yang QS, Tian W, Chen K, Ma YQ. Polymer–nucleic acid interactions. Top. Curr. Chem. (Cham) 375(2), 44 (2017).
  • Rytblat I, Wu N, Xu H, Gedanken A, Lin X. In vitro studies of polyethyleneimine coated miRNA microspheres as anticancer agents. Nano Res. 9(6), 1609–1617 (2016).
  • Xing J, Jia J, Cong X, Liu Z, Li Q. N-Isopropylacrylamide-modified polyethylenimine-mediated miR-29a delivery to inhibit the proliferation and migration of lung cancer cells. Colloids Surfaces B Biointerfaces 198, 111463 (2021).
  • Ibrahim AF, Weirauch U, Thomas M, Grünweller A, Hartmann RK, Aigner A. MicroRNA replacement therapy for miR-145 and miR-33a is efficacious in a model of colon carcinoma. Cancer Res. 71(15), 5214–5224 (2011).
  • Gao S, Tian H, Guo Y et al. MiRNA oligonucleotide and sponge for miRNA-21 inhibition mediated by PEI-PLL in breast cancer therapy. Acta Biomater. 25, 184–193 (2015).
  • Ji D, Wang Q, Zhao Q et al. Co-delivery of miR-29b and germacrone based on cyclic RGD-modified nanoparticles for liver fibrosis therapy. J. Nanobiotechnology 18(1), 86 (2020).
  • Liu T, Lin J, Chen C et al. MicroRNA-146b-5p overexpression attenuates premature ovarian failure in mice by inhibiting the Dab2ip/Ask1/p38-Mapk pathway and γH2A.X phosphorylation. Cell Prolif. 54(1), e12954 (2021).
  • Cosco D, Cilurzo F, Maiuolo J et al. Delivery of miR-34a by chitosan/PLGA nanoplexes for the anticancer treatment of multiple myeloma. Sci. Rep. 5, 17579–17579 (2015).
  • Chen Z, Liang Y, Feng X et al. Vitamin-B12-conjugated PLGA-PEG nanoparticles incorporating miR-532-3p induce mitochondrial damage by targeting apoptosis repressor with caspase recruitment domain (ARC) on CD320-overexpressed gastric cancer. Mater. Sci. Eng. C 120, 111722 (2021).
  • Devulapally R, Sekar NM, Sekar TV et al. Polymer nanoparticles mediated codelivery of antimiR-10b and antimiR-21 for achieving triple negative breast cancer therapy. ACS Nano 9(3), 2290–2302 (2015).
  • Hong ST, Lin H, Wang CS et al. Improving the anticancer effect of afatinib and microRNA by using lipid polymeric nanoparticles conjugated with dual pH-responsive and targeting peptides. J. Nanobiotechnology 17(1), 89 (2019).
  • Silva S, Almeida AJ, Vale N. Combination of cell-penetrating peptides with nanoparticles for therapeutic application: a review. Biomolecules 9, 22 (2019).
  • Gessner I, Neundorf I. Nanoparticles modified with cell-penetrating peptides: Conjugation mechanisms, physicochemical properties, and application in cancer diagnosis and therapy. Int. J. Mol. Sci. 21(7), 2536 (2020).
  • Ma W, Liu J, Xie J et al. Modulating the growth and imatinib sensitivity of chronic myeloid leukemia stem/progenitor cells with pullulan/MicroRNA nanoparticles in vitro. J. Biomed. Nanotechnol. 11(11), 1961–1974 (2015).
  • Abbasi E, Aval SF, Akbarzadeh A et al. Dendrimers: synthesis, applications, and properties. Nanoscale Res. Lett. 9(1), 247 (2014).
  • Dzmitruk V, Apartsin E, Ihnatsyeu-Kachan A, Abashkin V, Shcharbin D, Bryszewska M. Dendrimers show promise for siRNA and microrna therapeutics. Pharmaceutics 10, 126 (2018).
  • Song C, Xiao Y, Ouyang Z, Shen M, Shi X. Efficient co-delivery of microRNA 21 inhibitor and doxorubicin to cancer cells using core-shell tecto dendrimers formed via supramolecular host-guest assembly. J. Mater. Chem. B 8(14), 2768–2774 (2020).
  • Palombarini F, Masciarelli S, Incocciati A et al. Self-assembling ferritin-dendrimer nanoparticles for targeted delivery of nucleic acids to myeloid leukemia cells. J. Nanobiotechnology 19(1), 172 (2021).
  • Wang H, Zhao X, Guo C et al. Aptamer-dendrimer bioconjugates for targeted delivery of miR-34a expressing plasmid and antitumor effects in non-small cell lung cancer cells. PLoS ONE 10(9), e0139136 (2015).
  • Chaudhary V, Jangra S, Yadav NR. Nanotechnology based approaches for detection and delivery of microRNA in healthcare and crop protection. J. Nanobiotechnology 16, 40 (2018).
  • Coutinho C, Somoza Á. MicroRNA sensors based on gold nanoparticles. Anal. Bioanal. Chem. 411, 1807–1824 (2019).
  • Deng R, Ji B, Yu H et al. Multifunctional gold nanoparticles overcome microRNA regulatory network mediated-multidrug resistant leukemia. Sci. Rep. 9(1), 1–11 (2019).
  • Wang X, Jin N, Wang Q et al. MiRNA delivery system based on stimuli-responsive gold nanoparticle aggregates for multimodal tumor therapy. ACS Appl. Bio Mater. 2(7), 2833–2839 (2019).
  • Abu-Laban M, Hamal P, Arrizabalaga JH et al. Combinatorial delivery of miRNA-nanoparticle conjugates in human adipose stem cells for amplified osteogenesis. Small 15(50), (2019).
  • Unal O, Akkoc Y, Kocak M et al. Treatment of breast cancer with autophagy inhibitory microRNAs carried by AGO2-conjugated nanoparticles. J. Nanobiotechnology 18(1), 65 (2020).
  • Pan Z, Huang Y, Qian H, Du X, Qin W, Liu T. Superparamagnetic iron oxide nanoparticles drive mir-485-5p inhibition in glioma stem cells by silencing tie1 expression. Int. J. Biol. Sci. 16(7), 1274–1287 (2020).
  • Yalcin S. Dextran-coated iron oxide nanoparticle for delivery of miR-29a to breast cancer cell line. Pharm. Dev. Technol. 24(8), 1032–1037 (2019).
  • Cotta MA. Quantum dots and their applications: what lies ahead? ACS Appl. Nano Mater. 3, 4920–4924 (2020).
  • Liang G, Li Y, Feng W et al. Polyethyleneimine-coated quantum dots for miRNA delivery and its enhanced suppression in HepG2 cells. Int. J. Nanomedicine 11, 6079–6088 (2016).
  • Li Y, Duo Y, Bi J et al. Targeted delivery of anti-miR-155 by functionalized mesoporous silica nanoparticles for colorectal cancer therapy. Int. J. Nanomedicine 13, 1241–1256 (2018).
  • Sun Z, Shi K, Yang S et al. Effect of exosomal miRNA on cancer biology and clinical applications. Mol. Cancer. 17, 1–19 (2018).
  • Zhao Z, Zhao G, Yang S, Zhu S, Zhang S, Li P. The significance of exosomal RNAs in the development, diagnosis, and treatment of pancreatic cancer. Cancer Cell Int. 21(1), 364 (2021).
  • Kamal NNSBNM, Shahidan WNS. Non-exosomal and exosomal circulatory microRNAs: which are more valid as biomarkers? Front. Pharmacol. 10, 1500 (2020).
  • Liang G, Zhu Y, Ali DJ et al. Engineered exosomes for targeted co-delivery of miR-21 inhibitor and chemotherapeutics to reverse drug resistance in colon cancer. J. Nanobiotechnology 18(1), 1–15 (2020).
  • van Zandwijk N, Pavlakis N, Kao SC et al. Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: a first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol. 18(10), 1386–1396 (2017).
  • Winkle M, El-Daly SM, Fabbri M, Calin GA. Noncoding RNA therapeutics – challenges and potential solutions. Nat. Rev. Drug Discov. 20(8), 629–651 (2021).
  • Yang H-W, Yu C-C, Hsieh P-L et al. Arecoline enhances miR-21 to promote buccal mucosal fibroblasts activation. J. Formos. Med. Assoc. 120(4), 1108–1113 (2021).
  • Fang CY, Yu CC, Liao YW et al. miR-10b regulated by Twist maintains myofibroblasts activities in oral submucous fibrosis. J. Formos. Med. Assoc. 119(7), 1167–1173 (2020).
  • Lu MY, Yu CC, Chen PY et al. miR-200c inhibits the arecoline-associated myofibroblastic transdifferentiation in buccal mucosal fibroblasts. J. Formos. Med. Assoc. 117(9), 791–797 (2018).
  • Yuan Y, Li N, Zeng L, Shen Z, Jiang C. Pathogenesis investigation of miR-199-5p in oral submucous fibrosis based on bioinformatics analysis. Oral Dis. 25, 456–465 (2019).
  • Chattopadhyay E, Singh R, Ray A et al. Expression deregulation of mir31 and CXCL12 in two types of oral precancers and cancer: importance in progression of precancer and cancer. Sci. Rep. 6, 32735 (2016).
  • Liu CM, Liao YW, Hsieh PL et al. miR-1246 as a therapeutic target in oral submucosa fibrosis pathogenesis. J. Formos. Med. Assoc. 118, 1093–1098 (2019).
  • Solomom MC, Radhakrishnan RA. MicroRNA’s - The vibrant performers in the oral cancer scenario. Jpn Dent. Sci. Rev. 56(1), 85–89 (2020).
  • Hou YY, Lee JH, Chen HC et al. The association between miR-499a polymorphism and oral squamous cell carcinoma progression. Oral Dis. 21(2), 195–206 (2015).
  • Zheng L, Jian X, Guo F et al. miR-203 inhibits arecoline-induced epithelial-mesenchymal transition by regulating secreted frizzled-related protein 4 and transmembrane-4 L six family member 1 in oral submucous fibrosis. Oncol. Rep. 33(6), 2753–2760 (2015).
  • Liao YW, Yu CC, Hsieh PL, Chang YC. miR-200b ameliorates myofibroblast transdifferentiation in precancerous oral submucous fibrosis through targeting ZEB2. J. Cell. Mol. Med. 22(9), 4130–4138 (2018).
  • Prasad SR, Pai A, Shyamala K, Yaji A. Expression of salivary miRNA 21 in oral submucous fibrosis (OSMF): an observational study. Microrna 9(4), 295–302 (2020).
  • Singh P, Srivastava AN, Sharma R et al. Circulating microRNA-21 expression as a novel serum biomarker for oral sub-mucous fibrosis and oral squamous cell carcinoma. Asian Pac. J. Cancer Prev. 19(4), 1053–1058 (2018).
  • Hou Y-Y, Lee J-H, Chen H-C et al. The association between miR-499a polymorphism and oral squamous cell carcinoma progression. Oral Dis. 21(2), 195–206 (2015).
  • Chen J, Liu BJ, Du C, Cao Q, Li M, Feng H. [Target regulation of micro-RNA-203 to the expression of collagen type IV alpha 4 and its role in oral submucous fibrosis]. Chinese J. Stomatol. 51(9), 526–531 (2016).
  • Lu M-Y, Yu C-C, Chen P-Y et al. miR-200c inhibits the arecoline-associated myofibroblastic transdifferentiation in buccal mucosal fibroblasts. J. Formos. Med. Assoc. 117(9), 791–797 (2018).
  • Yuan Y, Li N, Zeng L, Shen Z, Jiang C. Pathogenesis investigation of miR-199-5p in oral submucous fibrosis based on bioinformatics analysis. Oral Dis. 25(2), 456–465 (2019).
  • Liu C-M, Liao Y-W, Hsieh P-L et al. miR-1246 as a therapeutic target in oral submucosa fibrosis pathogenesis. J. Formos. Med. Assoc. 118(7), 1093–1098 (2019).
  • Fang C-Y, Yu C-C, Liao Y-W et al. miR-10b regulated by Twist maintains myofibroblasts activities in oral submucous fibrosis. J. Formos. Med. Assoc. 119, 1167–1173 (2020).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.