186
Views
0
CrossRef citations to date
0
Altmetric
Review

Advances in Lipid-Based Pulmonary Nanomedicine for The Management of Inflammatory Lung Disorders

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 913-934 | Received 19 Oct 2021, Accepted 17 Mar 2022, Published online: 22 Apr 2022

References

  • Haque S, Whittaker MR, McIntosh MP, Pouton CW, Kaminskas LM. Disposition and safety of inhaled biodegradable nanomedicines: opportunities and challenges. Nanomedicine 12(6), 1703–1724 (2016).
  • Brusini R, Varna M, Couvreur P. Advanced nanomedicines for the treatment of inflammatory diseases. Adv. Drug Deliv. Rev. 157, 161–178 (2020).
  • Newman SP. Drug delivery to the lungs: challenges and opportunities. Ther. Deliv. 8(8), 647–661 (2017).
  • Kumar M, Jha A, Dr M, Mishra B. Targeted drug nanocrystals for pulmonary delivery: a potential strategy for lung cancer therapy. Expert Opin. Drug Deliv. 17(10), 1459–1472 (2020).
  • Ghasemiyeh P, Mohammadi-Samani S. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages. Res. Pharm. Sci. 13(4), 288–303 (2018).
  • Jaafar-Maalej C, Andrieu V, Elaissari A, Fessi H. Beclomethasone-loaded lipidic nanocarriers for pulmonary drug delivery: preparation, characterization and in vitro drug release. J. Nanosci. Nanotechnol. 11(3), 1841–1851 (2011).
  • Dabbagh A, Abu Kasim NH, Yeong CH, Wong TW, Abdul Rahman N. Critical parameters for particle-based pulmonary delivery of chemotherapeutics. J. Aerosol Med. Pulm. Drug Deliv. 31(3), 139–154 (2017).
  • Deniz A, Sade A, Severcan F, Keskin D, Tezcaner A, Banerjee S. Celecoxib-loaded liposomes: effect of cholesterol on encapsulation and in vitro release characteristics. Biosci. Rep. 30(5), 365–373 (2010).
  • Chiong HS, Yong YK, Ahmad Z et al. Cytoprotective and enhanced anti-inflammatory activities of liposomal piroxicam formulation in lipopolysaccharide-stimulated RAW 264.7 macrophages. Int. J. Nanomed. 8, 1245–1255 (2013).
  • Khan I, Hussein S, Houacine C et al. Fabrication, characterization and optimization of nanostructured lipid carrier formulations using beclomethasone dipropionate for pulmonary drug delivery via medical nebulizers. Int. J. Pharm. 598, 120376 (2021).
  • Shadambikar G, Marathe S, Ji N et al. Formulation development of itraconazole PEGylated nano-lipid carriers for pulmonary aspergillosis using hot-melt extrusion technology. Int. J. Pharm. X 3, 100074 (2021).
  • Khan I, Needham R, Yousaf S et al. Impact of phospholipids, surfactants and cholesterol selection on the performance of transfersomes vesicles using medical nebulizers for pulmonary drug delivery. J. Drug Deliv. Sci. Technol. 66, 102822 (2021).
  • Honmane S, Hajare A, More H, Osmani RAM, Salunkhe S. Lung delivery of nanoliposomal salbutamol sulfate dry powder inhalation for facilitated asthma therapy. J. Liposome Res. 29(4), 332–342 (2019).
  • Tahara K, Tomida H, Ito Y et al. Pulmonary liposomal formulations encapsulated procaterol hydrochloride by a remote loading method achieve sustained release and extended pharmacological effects. Int. J. Pharm. 505(1), 139–146 (2016).
  • Zhang L-J, Xing B, Wu J, Xu B, Fang X-L. Biodistribution in mice and severity of damage in rat lungs following pulmonary delivery of 9-nitrocamptothecin liposomes. Pulm. Pharmacol. Ther. 21(1), 239–246 (2008).
  • Patel A, Woods A, Riffo-Vasquez Y et al. Lung inflammation does not affect the clearance kinetics of lipid nanocapsules following pulmonary administration. J. Control. Release 235, 24–33 (2016).
  • Carlier FM, de Fays C, Pilette C. Epithelial barrier dysfunction in chronic respiratory diseases. Front. Physiol. 12, 691227 (2021).
  • Murgia X, Carvalho C de S, Lehr C-M. Overcoming the pulmonary barrier: new insights to improve the efficiency of inhaled therapeutics. Eur. J. Nanomed. 6(3), 157–169 (2014).
  • Alp G, Aydogan N. Lipid-based mucus penetrating nanoparticles and their biophysical interactions with pulmonary mucus layer. Eur. J. Pharm. Biopharm. 149, 45–57 (2020).
  • Zhao J, Su J, Qin L, Zhang X, Mao S. Exploring the influence of inhaled liposome membrane fluidity on its interaction with pulmonary physiological barriers. Biomater. Sci. 8(23), 6786–6797 (2020).
  • Li Z, Qiao W, Wang C et al. DPPC-coated lipid nanoparticles as an inhalable carrier for accumulation of resveratrol in the pulmonary vasculature, a new strategy for pulmonary arterial hypertension treatment. Drug Deliv. 27(1), 736–744 (2020).
  • Keum H, Kim J, Yoo D et al. Biomimetic lipid nanocomplexes incorporating STAT3-inhibiting peptides effectively infiltrate the lung barrier and ameliorate pulmonary fibrosis. J. Control. Release 332, 160–170 (2021).
  • Patil-Gadhe A, Kyadarkunte A, Patole M, Pokharkar V. Montelukast-loaded nanostructured lipid carriers: part II pulmonary drug delivery and in vitro–in vivo aerosol performance. Eur. J. Pharm. Biopharm. 88(1), 169–177 (2014).
  • Wang Q, Mi G, Hickey D et al. Azithromycin-loaded respirable microparticles for targeted pulmonary delivery for the treatment of pneumonia. Biomaterials 160, 107–123 (2018).
  • Lorenzoni R, Cordenonsi LM, Davies S et al. Lipid-core nanocapsules are an alternative to the pulmonary delivery and to increase the stability of statins. J. Microencapsul. 36(4), 317–326 (2019).
  • Hamedinasab H, Rezayan AH, Mellat M, Mashreghi M, Jaafari MR. Development of chitosan-coated liposome for pulmonary delivery of N-acetylcysteine. Int. J. Biol. Macromol. 156, 1455–1463 (2020).
  • Yu S, Wang S, Zou P et al. Inhalable liposomal powder formulations for co-delivery of synergistic ciprofloxacin and colistin against multi-drug resistant gram-negative lung infections. Int. J. Pharm. 575, 118915 (2020).
  • Hureaux J, Lacoeuille F, Lagarce F et al. Absence of lung fibrosis after a single pulmonary delivery of lipid nanocapsules in rats. Int. J. Nanomed. 12, 8159–8170 (2017).
  • Yu Z, Liu X, Chen H, Zhu L. Naringenin-loaded dipalmitoylphosphatidylcholine phytosome dry powders for inhaled treatment of acute lung injury. J. Aerosol Med. Pulm. Drug Deliv. 33(4), 194–204 (2020).
  • Li M, Zhang T, Zhu L, Wang R, Jin Y. Liposomal andrographolide dry powder inhalers for treatment of bacterial pneumonia via anti-inflammatory pathway. Int. J. Pharm. 528(1–2), 163–171 (2017).
  • Wijagkanalan W, Higuchi Y, Kawakami S, Teshima M, Sasaki H, Hashida M. Enhanced anti-inflammation of inhaled dexamethasone palmitate using mannosylated liposomes in an endotoxin-induced lung inflammation model. Mol. Pharmacol. 74(5), 1183–1192 (2008).
  • Kim G, Lee Y, Ha J, Han S, Lee M. Engineering exosomes for pulmonary delivery of peptides and drugs to inflammatory lung cells by inhalation. J. Control. Release 330, 684–695 (2021).
  • Cingolani E, Alqahtani S, Sadler RC, Prime D, Stolnik S, Bosquillon C. In vitro investigation on the impact of airway mucus on drug dissolution and absorption at the air–epithelium interface in the lungs. Eur. J. Pharm. Biopharm. 141, 210–220 (2019).
  • Hidalgo A, Cruz A, Pérez-Gil J. Barrier or carrier? Pulmonary surfactant and drug delivery. Eur. J. Pharm. Biopharm. 95, 117–127 (2015).
  • Nafee N, Makled S, Boraie N. Nanostructured lipid carriers versus solid lipid nanoparticles for the potential treatment of pulmonary hypertension via nebulization. Eur. J. Pharm. Sci. 125, 151–162 (2018).
  • Bujan A, Alonso S del V, Chiaramoni NS. Lipopolymers and lipids from lung surfactants in association with N-acetyl-L-cysteine: characterization and cytotoxicity. Chem. Phys. Lipids 231, 104936 (2020).
  • Haque S, Feeney O, Meeusen E et al. Local inflammation alters the lung disposition of a drug loaded PEGylated liposome after pulmonary dosing to rats. J. Control. Release 307, 32–43 (2019).
  • Yeganeh EM, Bagheri H, Mahjub R. Preparation, statistical optimization and in-vitro characterization of a dry powder inhaler (DPI) containing solid lipid nanoparticles encapsulating amphotericin B: ion paired complexes with distearoyl phosphatidylglycerol. Iran. J. Pharm. Res. 19(3), 45–62 (2020).
  • Wang J-L, Hanafy MS, Xu H et al. Aerosolizable siRNA-encapsulated solid lipid nanoparticles prepared by thin-film freeze-drying for potential pulmonary delivery. Int. J. Pharm. 596, 120215 (2021).
  • Umerska A, Mouzouvi CRA, Bigot A, Saulnier P. Formulation and nebulization of fluticasone propionate-loaded lipid nanocarriers. Int. J. Pharm. 493(1), 224–232 (2015).
  • Gomez AI, Acosta MF, Muralidharan P et al. Advanced spray dried proliposomes of amphotericin B lung surfactant-mimic phospholipid microparticles/nanoparticles as dry powder inhalers for targeted pulmonary drug delivery. Pulm. Pharmacol. Ther. 64, 101975 (2020).
  • Szabová J, Mišík O, Havlíková M, Lízal F, Mravec F. Influence of liposomes composition on their stability during the nebulization process by vibrating mesh nebulizer. Colloids Surf. B Biointerfaces 204, 111793 (2021).
  • Ji P, Yu T, Liu Y et al. Naringenin-loaded solid lipid nanoparticles: preparation, controlled delivery, cellular uptake, and pulmonary pharmacokinetics. Drug Des. Devel. Ther. 10, 911–925 (2016).
  • Ourique AF, dos Santos Chaves P, Souto GD, Pohlmann AR, Guterres SS, Beck RCR. Redispersible liposomal-N-acetylcysteine powder for pulmonary administration: development, in vitro characterization and antioxidant activity. Eur. J. Pharm. Sci. 65, 174–182 (2014).
  • Poyner EA, Alpar HO, Almeida AJ, Gamble MD, Brown MRW. A comparative study on the pulmonary delivery of tobramycin encapsulated into liposomes and PLA microspheres following intravenous and endotracheal delivery. J. Control. Release 35(1), 41–48 (1995).
  • Liu Y, Bos IST, Oenema TA, Meurs H, Maarsingh H, Hirsch AK. Delivery system for budesonide based on lipid-DNA. Eur. J. Pharm. Biopharm. 130, 123–127 (2018).
  • Komalla V, Allam VSRR, Kwok PCL et al. A phospholipid-based formulation for the treatment of airway inflammation in chronic respiratory diseases. Eur. J. Pharm. Biopharm. 157, 47–58 (2020).
  • Ng ZY, Wong J-Y, Panneerselvam J et al. Assessing the potential of liposomes loaded with curcumin as a therapeutic intervention in asthma. Colloids Surf. B Biointerfaces 172, 51–59 (2018).
  • Nassimi M, Schleh C, Lauenstein HD et al. A toxicological evaluation of inhaled solid lipid nanoparticles used as a potential drug delivery system for the lung. Eur. J. Pharm. Biopharm. 75(2), 107–116 (2010).
  • Huang Z, Huang Y, Wang W et al. Relationship between particle size and lung retention time of intact solid lipid nanoparticle suspensions after pulmonary delivery. J. Control. Release 325, 206–222 (2020).
  • Esmaeili M, Aghajani M, Abbasalipourkabir R, Amani A. Budesonide-loaded solid lipid nanoparticles for pulmonary delivery: preparation, optimization, and aerodynamic behavior. Artif. Cells Nanomed. Biotechnol. 44(8), 1964–1971 (2016).
  • Moreno-Sastre M, Pastor M, Esquisabel A et al. Pulmonary delivery of tobramycin-loaded nanostructured lipid carriers for Pseudomonas aeruginosa infections associated with cystic fibrosis. Int. J. Pharm. 498(1–2), 263–273 (2016).
  • Tran T-T, Yu H, Vidaillac C et al. An evaluation of inhaled antibiotic liposome versus antibiotic nanoplex in controlling infection in bronchiectasis. Int. J. Pharm. 559, 382–392 (2019).
  • Torge A, Wagner S, Chaves PS et al. Ciprofloxacin-loaded lipid-core nanocapsules as mucus penetrating drug delivery system intended for the treatment of bacterial infections in cystic fibrosis. Int. J. Pharm. 527(1), 92–102 (2017).
  • de Lima PHC, Butera AP, Cabeça LF, Ribeiro-Viana RM. Liposome surface modification by phospholipid chemical reactions. Chem. Phys. Lipids 237, 105084 (2021).
  • Miyazawa T, Itaya M, Burdeos GC, Nakagawa K, Miyazawa T. A critical review of the use of surfactant-coated nanoparticles in nanomedicine and food nanotechnology. Int. J. Nanomedicine 16, 3937–3999 (2021).
  • Di J, Gao X, Du Y, Zhang H, Gao J, Zheng A. Size, shape, charge and ‘stealthy’ surface: carrier properties affect the drug circulation time in vivo. Asian J. Pharm. Sci. 16(4), 444–458 (2021).
  • Chen X, Liu L, Jiang C. Charge-reversal nanoparticles: novel targeted drug delivery carriers. Acta Pharm. Sin. B 6(4), 261–267 (2016).
  • Haque S, Whittaker M, McIntosh MP, Pouton CW, Phipps S, Kaminskas LM. A comparison of the lung clearance kinetics of solid lipid nanoparticles and liposomes by following the 3H-labelled structural lipids after pulmonary delivery in rats. Eur. J. Pharm. Biopharm. 125, 1–12 (2018).
  • Shetty N, Hou J, Yanez E et al. Effect of lipidic excipients on the particle properties and aerosol performance of high drug load spray dried particles for inhalation. J. Pharm. Sci. doi: 10.1016/j.xphs.2021.09.004 (2021) ( Epub ahead of print).
  • Vartiainen V, Raula J, Bimbo LM et al. Pulmonary administration of a dry powder formulation of the antifibrotic drug tilorone reduces silica-induced lung fibrosis in mice. Int. J. Pharm. 544(1), 121–128 (2018).
  • Li Z, Perkins W, Cipolla D. Robustness of aerosol delivery of amikacin liposome inhalation suspension using the eFlow® technology. Eur. J. Pharm. Biopharm. 166, 10–18 (2021).
  • Emami J, Mohiti H, Hamishehkar H, Varshosaz J. Formulation and optimization of solid lipid nanoparticle formulation for pulmonary delivery of budesonide using Taguchi and Box–Behnken design. Res. Pharm. Sci. 10(1), 17–33 (2015).
  • Qin Y, Li Z, Yang Y et al. Liposomes formulated with fMLP-modified cholesterol for enhancing drug concentration at inflammatory sites. J. Drug Target. 22(2), 165–174 (2014).
  • Bai S, Gupta V, Ahsan F. Cationic liposomes as carriers for aerosolized formulations of an anionic drug: safety and efficacy study. Eur. J. Pharm. Sci. 38(2), 165–171 (2009).
  • Bonde S, Tambe K. Lectin coupled liposomes for pulmonary delivery of salbutamol sulphate for better management of asthma: formulation development using QbD approach. J. Drug Deliv. Sci. Tech. 54, 101336 (2019).
  • Murata M, Tahara K, Takeuchi H. Real-time in vivo imaging of surface-modified liposomes to evaluate their behavior after pulmonary administration. Eur. J. Pharm. Biopharm. 86(1), 115–119 (2014).
  • Patil HP, Freches D, Karmani L et al. Fate of PEGylated antibody fragments following delivery to the lungs: influence of delivery site, PEG size and lung inflammation. J. Control. Release 272, 62–71 (2018).
  • Manconi M, Manca ML, Valenti D et al. Chitosan and hyaluronan coated liposomes for pulmonary administration of curcumin. Int. J. Pharm. 525(1), 203–210 (2017).
  • Pooladanda V, Thatikonda S, Sunnapu O et al. iRGD conjugated nimbolide liposomes protect against endotoxin induced acute respiratory distress syndrome. Nanomedicine 33, 102351 (2021).
  • Santiwarangkool S, Akita H, Khalil IA et al. A study of the endocytosis mechanism and transendothelial activity of lung-targeted GALA-modified liposomes. J. Control. Release 307, 55–63 (2019).
  • Patil-Gadhe A, Pokharkar V. Pulmonary targeting potential of rosuvastatin loaded nanostructured lipid carrier: optimization by factorial design. Int. J. Pharm. 501(1–2), 199–210 (2016).
  • De Leo V, Ruscigno S, Trapani A et al. Preparation of drug-loaded small unilamellar liposomes and evaluation of their potential for the treatment of chronic respiratory diseases. Int. J. Pharm. 545(1), 378–388 (2018).
  • El-Laithy HM, Youssef A, El-Husseney SS, El Sayed NS, Maher A. Enhanced alveo pulmonary deposition of nebulized ciclesonide for attenuating airways inflammations: a strategy to overcome metered dose inhaler drawbacks. Drug Deliv. 28(1), 826–843 (2021).
  • Togami K, Chono S, Tada H. Alteration in intrapulmonary pharmacokinetics of aerosolized model compounds due to disruption of the alveolar epithelial barriers following bleomycin-induced pulmonary fibrosis in rats. J. Pharm. Sci. 105(3), 1327–1334 (2016).
  • Chennakesavulu S, Mishra A, Sudheer A, Sowmya C, Suryaprakash Reddy C, Bhargav E. Pulmonary delivery of liposomal dry powder inhaler formulation for effective treatment of idiopathic pulmonary fibrosis. Asian J. Pharm. Sci. 13(1), 91–100 (2018).
  • Garbuzenko OB, Kbah N, Kuzmov A, Pogrebnyak N, Pozharov V, Minko T. Inhalation treatment of cystic fibrosis with lumacaftor and ivacaftor co-delivered by nanostructured lipid carriers. J. Control. Release 296, 225–231 (2019).
  • Ivanova V, Garbuzenko OB, Reuhl KR, Reimer DC, Pozharov VP, Minko T. Inhalation treatment of pulmonary fibrosis by liposomal prostaglandin E2. Eur. J. Pharm. Biopharm. 84(2), 335–344 (2013).
  • Varshosaz J, Ghaffari S, Mirshojaei SF et al. Biodistribution of amikacin solid lipid nanoparticles after pulmonary delivery. Biomed. Res. Int. 2013, 136859 (2013).
  • Gregory TJ, Steinberg KP, Spragg R et al. Bovine surfactant therapy for patients with acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 155(4), 1309–1315 (1997).
  • Insmed Inc. Long term safety and tolerability study of open-label liposomal amikacin for inhalation (ARIKACE™) in cystic fibrosis patients with chronic infection due to Pseudomonas aeruginosa. https://clinicaltrials.gov/ct2/show/NCT01316276
  • Baden LR, El Sahly HM, Essink B et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384(5), 403–416 (2021).
  • Verbeke R, Lentacker I, De Smedt SC, Dewitte H. The dawn of mRNA vaccines: the COVID-19 case. J. Control. Release 333, 511–520 (2021).
  • Milane L, Amiji M. Clinical approval of nanotechnology-based SARS-CoV-2 mRNA vaccines: impact on translational nanomedicine. Drug Deliv. Transl. Res. 11(4), 1309–1315 (2021).
  • Anselmo AC, Mitragotri S. Nanoparticles in the clinic: an update. Bioeng. Transl. Med. 4(3), e10143 (2019).
  • Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm. Res. 33(10), 2373–2387 (2016).
  • Fenton OS, Olafson KN, Pillai PS, Mitchell MJ, Langer R. Advances in biomaterials for drug delivery. Adv. Mater. 30(29), 1705328 (2018).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.