153
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Vaping Additives Negatively Impact The Stability and Lateral Film Organization of Lung Surfactant Model Systems

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 827-843 | Received 27 Oct 2021, Accepted 01 Apr 2022, Published online: 19 Apr 2022

References

  • Eissenberg T, McRobbie H. Electronic cigarettes: review of use, content, safety, effects on smokers, and potential for harm and benefit. Physiol. Behav. 176(5), 139–148 (2018).
  • Pepper JK, Lee YO, Watson KA, Kim AE, Nonnemaker JM, Farrelly MC. Risk factors for youth e-cigarette “vape trick” behavior. J. Adolesc. Heal. 61(5), 599–605 (2017).
  • Jacobus J, Tapert S. Effects of cannabis on the adolescent brain. Curr. Pharm. Des. 20(13), 2186–2193 (2014).
  • Centers for Disease Control and Prevention. Outbreak of lung injury associated with the use of e-cigarette, or vaping, products (Accessed 27 September 2021). www.cdc.gov/tobacco/basic_information/e-cigarettes/severe-lung-disease.html
  • Blount BC, Karwowski MP, Shields PG et al. Vitamin E acetate in bronchoalveolar-lavage fluid associated with EVALI. N. Engl. J. Med. 382(8), 697–705 (2020).
  • Christiani DC. Vaping-induced acute lung injury. N. Engl. J. Med. 382(10), 960–962 (2020).
  • Mikheev VB, Klupinski TP, Ivanov A, Lucas EA, Strozier ED, Fix C. Particle size distribution and chemical composition of aerosolized vitamin E acetate. Aerosol Sci. Technol. 54(9), 993–998 (2020).
  • Tsuda A, Henry FS, Butler JP. Particle transport and deposition: basic physics of particle kinetics. Compr. Physiol. 3(4), 1437–1471 (2013).
  • Dziura M, Mansour B, Dipasquale M, Chandrasekera PC, Gauld JW, Marquardt D. Simulated breathing: application of molecular dynamics simulations to pulmonary lung surfactant. Symmetry (Basel) 13(7), 1–19 (2021).
  • Rugonyi S, Biswas SC, Hall SB. The biophysical function of pulmonary surfactant. Respir. Physiol. Neurobiol. 163(1–3), 244–255 (2008).
  • Dipasquale M, Gbadamosi O, Nguyen MHL et al. A mechanical mechanism for vitamin E acetate in e-cigarette/vaping-associated lung injury. Chem. Res. Toxicol. 33(9), 2432–2440 (2020).
  • Hayeck N, Zoghzoghi C, Karam E et al. Carrier solvents of electronic nicotine delivery systems alter pulmonary surfactant. Chem. Res. Toxicol. 34(6), 1572–1577 (2021).
  • Guzmán E, Santini E. Lung surfactant-particles at fluid interfaces for toxicity assessments. Curr. Opin. Colloid Interface Sci. 39, 24–39 (2019).
  • Sosnowski TR, Kubski P, Wojciechowski K. New experimental model of pulmonary surfactant for biophysical studies. Colloids Surf. A Physicochem. Eng. Asp. 519, 27–33 (2017).
  • Sosnowski TR, Podgórski A. Assessment of the pulmonary toxicity of inhaled gases and particles with physicochemical methods. Int. J. Occup. Saf. Ergon. 5(3), 431–447 (1999).
  • Guzmán E, Santini E, Ferrari M, Liggieri L, Ravera F. Interaction of particles with Langmuir monolayers of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine: a matter of chemistry? Coatings 10(5), 1–20 (2020).
  • Leonenko Z, Finot E, Vassiliev V, Amrein M. Effect of cholesterol on the physical properties of pulmonary surfactant films: atomic force measurements study. Ultramicroscopy 106(8–9), 687–694 (2006).
  • Bernhard W, Haagsman HP, Tschernig T et al. Conductive airway surfactant: surface-tension function, biochemical composition, and possible alveolar origin. Am. J. Respir. Cell Mol. Biol. 17(1), 41–50 (1997).
  • Gómez-Gil L, Schürch D, Goormaghtigh E, Pérez-Gil J. Pulmonary surfactant protein SP-C counteracts the deleterious effects of cholesterol on the activity of surfactant films under physiologically relevant compression-expansion dynamics. Biophys. J. 97(10), 2736–2745 (2009).
  • Vollhardt D, Fainerman VB. Progress in characterization of Langmuir monolayers by consideration of compressibility. Adv. Colloid Interface Sci. 127(2), 83–97 (2006).
  • Broniatowski M, Flasiński M, Dynarowicz-ŁA̧tka P, Majewski J. Grazing incidence diffraction and x-ray reflectivity studies of the interactions of inorganic mercury salts with membrane lipids in Langmuir monolayers at the air/water interface. J. Phys. Chem. B 114(29), 9474–9484 (2010).
  • Hönig D, Möbius D. Direct visualization of monolayers at the air-water interface by Brewster angle microscopy. J. Phys. Chem. 95(12), 4590–4592 (1991).
  • Pusterla JM, Malfatti-Gasperini AA, Puentes-Martinez XE, Cavalcanti LP, Oliveira RG. Refractive index and thickness determination in Langmuir monolayers of myelin lipids. Biochim. Biophys. Acta – Biomembr. 1859(5), 924–930 (2017).
  • Winsel K, Hönig D, Lunkenheimer K, Geggel K, Witt C. Quantitative Brewster angle microscopy of the surface film of human broncho-alveolar lavage fluid. Eur. Biophys. J. 32(6), 544–552 (2003).
  • Diamant H, Witten TA, Ege C, Gopal A, Lee KYC. Topography and instability of monolayers near domain boundaries. Phys. Rev. E – Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 63(6), 1–17 (2001).
  • Davies JT, Rideal EK. Properties of monolayers. Interfacial Phenomena (Second Edition). Academic Press, 217–281 (1961).
  • Piknova B, Schram V, Hall SB. Pulmonary surfactant: phase behavior and function. Curr. Opin. Struct. Biol. 12(4), 487–494 (2002).
  • McConlogue CW, Vanderlick TK. A close look at domain formation in DPPC monolayers. Langmuir 13(26), 7158–7164 (1997).
  • Daear W, Mahadeo M, Prenner EJ. Applications of Brewster angle microscopy from biological materials to biological systems. Biochim. Biophys. Acta – Biomembr. 1859(10), 1749–1766 (2017).
  • Al-Hallak MHDK, Azarmi S, Sun C et al. Pulmonary toxicity of polysorbate-80-coated inhalable nanoparticles; in vitro and in vivo evaluation. AAPS J. 12(3), 294–299 (2010).
  • US Food and Drug Administration. Lung injuries associated with use of vaping products. www.fda.gov/news-events/public-health-focus/lung-injuries-associated-use-vaping-products
  • Atkinson J, Harroun T, Wassall SR, Stillwell W, Katsaras J. The location and behavior of α-tocopherol in membranes. Mol. Nutr. Food Res. 54(5), 641–651 (2010).
  • Atkinson J, Epand RF, Epand RM. Tocopherols and tocotrienols in membranes: a critical review. Free Radic. Biol. Med. 44(5), 739–764 (2008).
  • Marquardt D, Williams JA, Kuc N, Wassall SR, Katsaras J, Harroun TA. Tocopherol activity correlates with its location in a membrane: a new perspective on the antioxidant vitamin E. J. Am. Chem. So 135(20), 7523–7533 (2013).
  • Wang X, Quinn PJ. The location and function of vitamin E in membranes (review). Mol. Membr. Biol. 17(3), 143–156 (2000).
  • Massey JB, She HS, Pownall HJ. Interaction of vitamin E with saturated phospholipid bilayers. Biochem. Biophys. Res. Commun. 106(3), 842–847 (1982).
  • Massey JB. Interfacial properties of phosphatidylcholine bilayers containing vitamin E derivatives. Chem. Phys. Lipids 109(2), 157–174 (2001).
  • DiPasquale M, Nguyen MHL, Rickeard BW et al. The antioxidant vitamin E as a membrane raft modulator: tocopherols do not abolish lipid domains. Biochim. Biophys. Acta – Biomembr. 1862(8), 183189 (2020).
  • Gomez-Fernandez JC, Villalain J, Aranda FJ et al. Localization of a-tocopherol in membranes. Ann. NY Acad. Sci. 570(1), 109–120 (1989).
  • Mavromoustakos T, Theodoropoulou E, Papahatjis D. Studies on the thermotropic effects of cannabinoids on phosphatidylcholine bilayers using differential scanning calorimetry and small angle x-ray diffraction. Biochim. Biophys. Acta 1281(2), 235–244 (1996).
  • Hillard CJ, Harris RA, Bloom AS. Effects of the cannabinoids on physical properties of brain membranes and phospholipid vesicles: fluorescence studies. J. Pharmacol. Exp. Ther. 232(3), 579–588 (1985).
  • Lanzarotta A, Falconer TM, Flurer R, Wilson RA. Hydrogen bonding between tetrahydrocannabinol and vitamin E acetate in unvaped, aerosolized, and condensed aerosol e-liquids. Anal. Chem. 92(3), 2374–2378 (2020).
  • Ali S, Brockman HL, Brown RE. Structural determinants of miscibility in surface films of galactosylceramide and phosphatidylcholine: effect of unsaturation in the galactosylceramide acyl chain. Biochemistry 30(47), 11198–11205 (1991).
  • Postle AD, Heeley EL, Wilton DC. A comparison of the molecular species compositions of mammalian lung surfactant phospholipids. Comp. Biochem. Physiol. – A Mol. Integr. Physiol. 129(1), 65–73 (2001).
  • Braun SR. Chapter 43 -Respiratory Rate and Pattern.. Clinical Methods: The History, Physical, and Laboratory Examinations. Walker HK, Hall WD, Hurst JW (Eds). Butterworths, MA, USA, 226–230 (1990).
  • Wongwailikhit K, Jiratchaya J. Comparison of the two common solvents for THC and CBD extractions. Proc. 7th World Congr. Mech. Chem. Mater. Eng. 1–7 (2021).
  • Chadi N, Minato C, Stanwick R. Cannabis vaping: understanding the health risks of a rapidly emerging trend. Paediatr. Child Health (Oxford) 25, 16–20 (2020).
  • Daear W, Lai P, Anikovskiy M, Prenner EJ. Differential interactions of gelatin nanoparticles with the major lipids of model lung surfactant: changes in the lateral membrane organization. J. Phys. Chem. B 119, 5356–5366 (2015).
  • García-Sáez AJ, Chiantia S, Schwille P. Effect of line tension on the lateral organization of lipid membranes. J. Biol. Chem. 282(46), 33537–33544 (2007).
  • Benvegnu D, McConnell H. Line tension between liquid domains in lipid monolayers. J. Phys. Chem. 96, 6820–6824 (1992).
  • McConnell HM, de Koker R. Equilibrium thermodynamics of lipid monolayer domains. Langmuir 12(20), 4897–4904 (1996).
  • Muddana HS, Chiang HH, Butler PJ. Tuning membrane phase separation using nonlipid amphiphiles. Biophys. J. 102(3), 489–497 (2012).
  • Przybyla RJ, Wright J, Parthiban R, Nazemidashtarjandi S, Kaya S, Farnoud AM. Electronic cigarette vapor alters the lateral structure but not tensiometric properties of calf lung surfactant. Respir. Res. 18(1), 1–13 (2017).
  • Davies MJ, Leach AG, Fullwood D, Mistry D, Hope A. The pH dependent interaction between nicotine and simulated pulmonary surfactant monolayers with associated molecular modelling. Surf. Interface Anal. 49(9), 919–927 (2017).
  • Lee H. Vitamin E Acetate as linactant in the pathophysiology of EVALI. Med. Hypothesis 144, 110182 (2020).
  • Lee AG. Lipid-protein interactions in biological membranes: a structural perspective. Viochim. Biophys. Acta 1612(1), 1–40 (2003).
  • Leonenko Z, Gill S, Baoukina S et al. An elevated level of cholesterol impairs self-assembly of pulmonary surfactant into a functional film. Biophys. J. 93(2), 674–683 (2007).
  • Gunasekara L, Schürch S, Schoel WM et al. Pulmonary surfactant function is abolished by an elevated proportion of cholesterol. Biochim. Biophys. Acta – Mol. Cell Biol. Lipids 1737(1), 27–35 (2005).
  • Yu SH, Possmayer F. Interaction of pulmonary surfactant protein a with dipalmitoylphosphatidylcholine and cholesterol at the air/water interface. J. Lipid Res. 39(3), 555–568 (1998).
  • Stillwell W, Dallman T, Dumaual AC, Thomas Crump F, Jenski LJ. Cholesterol versus α-tocopherol: effects on properties of bilayers made from heteroacid phosphatidylcholines. Biochemistry 35(41), 13353–13362 (1996).
  • Bradford A, Atkinson J, Fuller N, Rand RP. The effect of vitamin E on the structure of membrane lipid assemblies. J. Lipid Res. 44(10), 1940–1945 (2003).
  • Villalain J, Aranda FJ, Gomez-Fernandez JC. Calorimetric and infrared spectroscopic studies of the interaction of α-tocopherol and α-tocopheryl acetate with phospholipid vesicles. Eur. J. Biochem. 158(1), 141–147 (1986).
  • Marquardt D, Kučerka N, Katsaras J, Harroun TA. α-Tocopherols location in membranes is not affected by their composition. Langmuir 31(15), 4464–4472 (2015).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.