157
Views
0
CrossRef citations to date
0
Altmetric
Review

Nanomedicine-Driven Therapeutic Interventions of Autophagy and Stem Cells in The Management of Alzheimer’s Disease

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 145-168 | Received 01 May 2022, Accepted 07 Feb 2023, Published online: 20 Mar 2023

References

  • Prince M , Comas-HerreraA, KnappM, GuerchetM, KaragiannidouM. World Alzheimer report 2016: improving healthcare for people living with dementia: coverage, quality and costs now and in the future: coverage, quality and costs now and in the future. Alzheimer’s Dis. Int. (2016). https://www.alz.co.uk/research/world-report-2016
  • Yiannopoulou KG , PapageorgiouSG. Current and future treatments in Alzheimer disease: an update. J. Cent. Nerv. Syst. Dis.12, 1–12 (2020).
  • Klimova B , MaresovaP, ValisMet al. Alzheimer’s disease and language impairments: social intervention and medical treatment. Clin. Interv. Aging10, 1401 (2015).
  • Maresova P , KlimovaB, NovotnyMet al. Alzheimer’s and Parkinson’s diseases: expected economic impact on Europe – a call for a uniform European strategy. J. Alzheimers Dis.54(3), 1123–1133 (2016).
  • Morris JC . Classification of dementia and Alzheimer’s disease. Acta Neurol. Scand.94(Suppl. 165), S41–S50 (1996).
  • Klimova B , KucaK. Speech and language impairments in dementia. J. Appl. Biomed.14(2), 97–103 (2016).
  • Nieoullon A . Neurodegenerative diseases and neuroprotection: current views and prospects. J. Appl. Biomed.9(4), 173–183 (2011).
  • Von Schnehen A , HobeikaL, Huvent-GrelleDet al. Sensorimotor synchronization in healthy aging and neurocognitive disorders. Front. Psychol.13, 838511 (2022).
  • Association AS . Alzheimer’s disease facts and figures. Alzheimers Dement.18(4), 700–789 (2022).
  • Cummings J , LeeG, NahedPet al. Alzheimer’s disease drug development pipeline. Alzheimers Dement.8, e12295 (2022).
  • Plascencia-Villa G , PerryG. Neuropathologic changes provide insights into key mechanisms related to Alzheimer disease and related dementia. Am. J. Pathol.S0002-9440(22), 00206-1 (2022).
  • De-Paula VJ , RadanovicM, DinizBSet al. Alzheimer’s disease. Subcell Biochem.65, 329–352 (2012).
  • Tiwari S , AtluriV, KaushikAet al. Alzheimer’s disease: pathogenesis, diagnostics, and therapeutics. Int. J. Nanomed.14, 5541 (2019).
  • Chen ZR , HuangJB, YangSLet al. Role of cholinergic signaling in Alzheimer’s disease. Molecules27(6), 1816 (2022).
  • Hardingham GE , FukunagaY, BadingH. Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat. Neurosci.5(5), 405–414 (2002).
  • Ikonomidou C , BoschF, MiksaMet al. Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science283(5398), 70–74 (1999).
  • Rothman SM , OlneyJW. Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann. Neurol.19(2), 105–111 (1986).
  • Brunholz S , SisodiaS, LorenzoAet al. Axonal transport of APP and the spatial regulation of APP cleavage and function in neuronal cells. Exp. Brain Res.217(3-4), 353–364 (2012).
  • Smith DG , CappaiR, BarnhamKJ. The redox chemistry of the Alzheimer’s disease amyloid β peptide. Biochim. Biophys. Acta Biomembr.1768(8), 1976–1990 (2007).
  • Kim J , BasakJM, HoltzmanDM. The role of apolipoprotein E in Alzheimer’s disease. Neuron63(3), 287–303 (2009).
  • Hernandez-Sapiens MA , Reza-ZaldívarEE, Márquez-AguirreALet al. Presenilin mutations and their impact on neuronal differentiation in Alzheimer’s disease. Neural. Regen. Res.17(1), 31–37 (2022).
  • Meschia JF , BushnellC, Boden-AlbalaBet al. Guidelines for the primary prevention of stroke: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke45(12), 3754–3832 (2014).
  • Sierra C , CocaA, SchiffrinEL. Vascular mechanisms in the pathogenesis of stroke. Curr. Hypertens. Rep.13(3), 200–207 (2011).
  • Joas E , BäckmanK, GustafsonDet al. Blood pressure trajectories from midlife to late life in relation to dementia in women followed for 37 years. Hypertension59(4), 796–801 (2012).
  • Norton S , MatthewsFE, BarnesDEet al. Potential for primary prevention of Alzheimer’s disease: an analysis of population-based data. Lancet Neurol.13(8), 788–794 (2014).
  • Cheng G , HuangC, DengHet al. Diabetes as a risk factor for dementia and mild cognitive impairment: a meta-analysis of longitudinal studies. Intern. Med. J.42(5), 484–491 (2012).
  • Barbagallo M , DominguezLJ. Type 2 diabetes mellitus and Alzheimer’s disease. World J. Diabetes5(6), 889 (2014).
  • Fitzpatrick AL , KullerLH, LopezOLet al. Midlife and late-life obesity and the risk of dementia: cardiovascular health study. Arch. Neurol.66(3), 336–342 (2009).
  • Magalhaes C , CarvalhoM, SousaLet al. Leptin in Alzheimer’s disease. Clin. Chim. Acta450, 162–168 (2015).
  • Irizarry MC . Biomarkers of Alzheimer disease in plasma. NeuroRx1(2), 226–234 (2004).
  • Mrak RE , GriffinWST. Potential inflammatory biomarkers in Alzheimer’s disease. J. Alzheimers Dis.8(4), 369–375 (2005).
  • Pacheco-Quinto J , de TurcoEBR, DeRosa Set al. Hyperhomocysteinemic Alzheimer’s mouse model of amyloidosis shows increased brain amyloid β peptide levels. Neurobiol. Dis.22(3), 651–656 (2006).
  • Ballabh P , BraunA, NedergaardM. The blood–brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol. Dis.16(1), 1–13 (2004).
  • Kniesel U , WolburgH. Tight junctions of the blood–brain barrier. Cell. Mol. Neurobiol.20(1), 57–76 (2000).
  • Wolburg H , LippoldtA. Tight junctions of the blood–brain barrier: development, composition and regulation. Vasc. Pharmacol.38(6), 323–337 (2002).
  • Abbott NJ , PatabendigeAA, DolmanDEet al. Structure and function of the blood–brain barrier. Neurobiol. Dis.37(1), 13–25 (2010).
  • Barnabas W . Drug targeting strategies into the brain for treating neurological diseases. J. Neurosci. Methods311, 133–146 (2019).
  • Praça C , RaiA, SantosTet al. A nanoformulation for the preferential accumulation in adult neurogenic niches. J. Control. Rel.284, 57–72 (2018).
  • Juillerat-Jeanneret L . The targeted delivery of cancer drugs across the blood–brain barrier: chemical modifications of drugs or drug-nanoparticles?Drug Discov. Today13(23–24), 1099–1106 (2008).
  • Gaillard PJ , VisserCC, AppeldoornCCet al. Enhanced brain drug delivery: safely crossing the blood–brain barrier. Drug Discov. Today Technol.9(2), e155–e160 (2012).
  • Jones AR , ShustaEV. Blood–brain barrier transport of therapeutics via receptor-mediation. Pharm. Res.24(9), 1759–1771 (2007).
  • Niu X , ChenJ, GaoJ. Nanocarriers as a powerful vehicle to overcome blood–brain barrier in treating neurodegenerative diseases: focus on recent advances. Asian J. Pharm. Sci.14(5), 480–496 (2019).
  • Teixeira MI , LopesC, AmaralMHet al. Current insights on lipid nanocarrier-assisted drug delivery in the treatment of neurodegenerative diseases. Eur. J. Pharma. Biopharm.149, 192–217 (2020).
  • Hanson LR , FreyWH. Intranasal delivery bypasses the blood–brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC Neurosci.9(3), 1–4 (2008).
  • Samaridou E , AlonsoMJ. Nose-to-brain peptide delivery – the potential of nanotechnology. Bioorg. Med. Chem.26(10), 2888–2905 (2018).
  • Dhuria SV , HansonLR, FreyWH. Novel vasoconstrictor formulation to enhance intranasal targeting of neuropeptide therapeutics to the central nervous system. J. Pharmacol. Exp. Ther.328(1), 312–320 (2009).
  • Liu X-F , FawcettJR, HansonLRet al. The window of opportunity for treatment of focal cerebral ischemic damage with noninvasive intranasal insulin-like growth factor-I in rats. J. Stroke Cerebrovasc. Dis.13(1), 16–23 (2004).
  • Binda A , MuranoC, RivoltaI. Innovative therapies and nanomedicine applications for the treatment of Alzheimer’s disease: a state-of-the-art (2017–2020). Int. J. Nanomed.15, 6113–6135 (2020).
  • Graham WV , Bonito-OlivaA, SakmarTP. Update on Alzheimer’s disease therapy and prevention strategies. Annu. Rev. Med.68, 413–430 (2017).
  • Harilal S , JoseJ, ParambiDGTet al. Advancements in nanotherapeutics for Alzheimer’s disease: current perspectives. J. Pharm. Pharmacol.71(9), 1370–1383 (2019).
  • Cavazzoni P . FDA’s Decision to Approve New Treatment for Alzheimer’s Disease. MD, USA (2021).
  • National Institute on Aging. FDA grants accelerated approval for Alzheimer’s drug. Press release. www.nia.nih.gov/news/fda-grants-accelerated-approval-alzheimers-drug
  • Mudshinge SR , DeoreAB, PatilSet al. Nanoparticles: emerging carriers for drug delivery. Saudi Pharm. J.19(3), 129–141 (2011).
  • Ahmad ZM , AhmadJ, AminSet al. Role of nanomedicines in delivery of anti-acetylcholinesterase compounds to the brain in Alzheimer’s disease. CNS Neurol. Disord. Drug Targets13(8), 1315–1324 (2014).
  • Nazem A , MansooriGA. Nanotechnology solutions for Alzheimer’s disease: advances in research tools, diagnostic methods and therapeutic agents. J. Alzheimer’s Dis.13(2), 199–223 (2008).
  • Brambilla D , LeDroumaguet B, NicolasJet al. Nanotechnologies for Alzheimer’s disease: diagnosis, therapy, and safety issues. Nanomedicine7(5), 521–540 (2011).
  • Saraiva C , PraçaC, FerreiraR. Nanoparticle-mediated brain drug delivery: overcoming blood–brain barrier to treat neurodegenerative diseases. J. Control. Rel.235, 34–47 (2016).
  • Alyautdin R , KhalinI, NafeezaMIet al. Nanoscale drug delivery systems and the blood–brain barrier. Int. J. Nanomed.9, 795 (2014).
  • Fernández PL , BrittonGB, RaoK. Potential immunotargets for Alzheimer’s disease treatment strategies. J. Alzheimers Dis.33(2), 297–312 (2013).
  • Barone E , DiDomenico F, ButterfieldDA. Statins more than cholesterol lowering agents in Alzheimer disease: their pleiotropic functions as potential therapeutic targets. Biochem. Pharmacol.88(4), 605–616 (2014).
  • Eskici GZ , AxelsenPH. Copper and oxidative stress in the pathogenesis of Alzheimer’s disease. Biochem51(32), 6289–6311 (2012).
  • Lajoie JM , ShustaEV. Targeting receptor-mediated transport for delivery of biologics across the blood–brain barrier. Annu. Rev. Pharmacol. Toxicol.55, 613–631 (2015).
  • Tenovuo O . Central acetylcholinesterase inhibitors in the treatment of chronic traumatic brain injury – clinical experience in 111 patients. Prog. Neuropsychopharmacol. Biol. Psychiatry29(1), 61–67 (2005).
  • Venkatesh K , BullockR, AkbasA. Strategies to improve tolerability of rivastigmine: a case series. Curr. Med. Res. Opin.23(1), 93–95 (2007).
  • Yang Z-Z , ZhangY-Q, WangZ-Zet al. Enhanced brain distribution and pharmacodynamics of rivastigmine by liposomes following intranasal administration. Int. J. Pharm.452(1–2), 344–354 (2013).
  • Liu X , XuK, YanMet al. Protective effects of galantamine against Aβ-induced PC12 cell apoptosis by preventing mitochondrial dysfunction and endoplasmic reticulum stress. Neurochem. Intern.57(5), 588–599 (2010).
  • Mufamadi MS , ChoonaraYE, KumarPet al. Ligand-functionalized nanoliposomes for targeted delivery of galantamine. Int. J. Pharm.448(1), 267–281 (2013).
  • Chen H , TangL, QinYet al. Lactoferrin-modified procationic liposomes as a novel drug carrier for brain delivery. Eur. J. Pharm. Sci.40(2), 94–102 (2010).
  • Kuo Y-C , WangC-T. Protection of SK-N-MC cells against β-amyloid peptide-induced degeneration using neuron growth factor-loaded liposomes with surface lactoferrin. Biomaterials35(22), 5954–5964 (2014).
  • Balducci C , ManciniS, MinnitiSet al. Multifunctional liposomes reduce brain β-amyloid burden and ameliorate memory impairment in Alzheimer’s disease mouse models. J. Neuro. Sci.34(42), 14022–14031 (2014).
  • Gobbi M , ReF, CanoviMet al. Lipid-based nanoparticles with high binding affinity for amyloid-β1-42 peptide. Biomaterials31(25), 6519–6529 (2010).
  • Matsuoka Y , SaitoM, LaFrancoisJet al. Novel therapeutic approach for the treatment of Alzheimer’s disease by peripheral administration of agents with an affinity to β-amyloid. J. Neurosci.23(1), 29–33 (2003).
  • Wisniewski T , KonietzkoU. Amyloid-β immunisation for Alzheimer’s disease. Lancet Neurol.7(9), 805–811 (2008).
  • Valera E , MasliahE. Immunotherapy for neurodegenerative diseases: focus on α-synucleinopathies. Pharmacol. Ther.138(3), 311–322 (2013).
  • Bard F , CannonC, BarbourRet al. Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat. Med.6(8), 916–919 (2000).
  • Ordóñez-Gutiérrez L , Posado-FernándezA, AhmadvandDet al. ImmunoPEGliposome-mediated reduction of blood and brain amyloid levels in a mouse model of Alzheimer’s disease is restricted to aged animals. Biomaterials112, 141–152 (2017).
  • Danhier F , AnsorenaE, SilvaJMet al. PLGA-based nanoparticles: an overview of biomedical applications. J. Control. Rel.161(2), 505–522 (2012).
  • Sathya S , ShanmuganathanB, SaranyaSet al. Phytol-loaded PLGA nanoparticle as a modulator of Alzheimer’s toxic Aβ peptide aggregation and fibrillation associated with impaired neuronal cell function. Artif. Cells Nanomed. Biotechnol.46(8), 1719–1730 (2018).
  • Fornaguera C , Feiner-GraciaN, CalderóGet al. Galantamine-loaded PLGA nanoparticles, from nano-emulsion templating, as novel advanced drug delivery systems to treat neurodegenerative diseases. Nanoscale7(28), 12076–12084 (2015).
  • Sánchez-López E , EttchetoM, EgeaMAet al. New potential strategies for Alzheimer’s disease prevention: PEGylated biodegradable dexibuprofen nanospheres administration to APPswe/PS1dE9. Nanomedicine13(3), 1171–1182 (2017).
  • Sánchez-López E , EttchetoM, EgeaMAet al. Memantine loaded PLGA PEGylated nanoparticles for Alzheimer’s disease: in vitro and in vivo characterization. J. Nanobiotechnol.16(1), 1–16 (2018).
  • Noetzli M , EapCB. Pharmacodynamic, pharmacokinetic and pharmacogenetic aspects of drugs used in the treatment of Alzheimer’s disease. Clin. Pharmacokinet.52(4), 225–241 (2013).
  • Md S , AliM, BabootaSet al. Preparation, characterization, in vivo biodistribution and pharmacokinetic studies of donepezil-loaded PLGA nanoparticles for brain targeting. Drug Dev. Ind. Pharm.40(2), 278–287 (2014).
  • Baysal I , UcarG, GultekinogluMet al. Donepezil loaded PLGA-b-PEG nanoparticles: their ability to induce destabilization of amyloid fibrils and to cross blood brain barrier in vitro. J. Neural Transm.124(1), 33–45 (2017).
  • Wilson B , SamantaMK, SanthiKet al. Poly(N-butylcyanoacrylate) nanoparticles coated with polysorbate 80 for the targeted delivery of rivastigmine into the brain to treat Alzheimer’s disease. Brain Res.1200, 159–168 (2008).
  • Garrido-Maraver J , CorderoMD, Oropesa-ÁvilaMet al. Coenzyme Q10 therapy. Mol. Syndromol.5(3–4), 187–197 (2014).
  • Wang ZH , WangZY, SunCSet al. Trimethylated chitosan-conjugated PLGA nanoparticles for the delivery of drugs to the brain. Biomaterials31(5), 908–915 (2010).
  • Toyn J . What lessons can be learned from failed Alzheimer’s disease trials?Exp. Rev. Clin. Pharmacol.8(3), 267–269 (2015).
  • Carradori D , BalducciC, ReFet al. Antibody-functionalized polymer nanoparticle leading to memory recovery in Alzheimer’s disease-like transgenic mouse model. Nanomedicine14(2), 609–618 (2018).
  • Jose J , CharyuluRN. Prolonged drug delivery system of an antifungal drug by association with polyamidoamine dendrimers. Int. J. Pharm. Invest.6(2), 123 (2016).
  • Klajnert B , Cortijo-ArellanoM, CladeraJet al. Influence of dendrimer’s structure on its activity against amyloid fibril formation. Biochem. Biophys. Res. Commun.345(1), 21–28 (2006).
  • Patel DA , HenryJE, GoodTA. Attenuation of β-amyloid-induced toxicity by sialic-acid-conjugated dendrimers: role of sialic acid attachment. Brain Res.1161, 95–105 (2007).
  • Chafekar SM , MaldaH, MerkxMet al. Branched KLVFF tetramers strongly potentiate inhibition of beta-amyloid aggregation. Chembiochem8, 1857–1864 (2007).
  • Aso E , MartinssonI, AppelhansDet al. Poly(propylene imine) dendrimers with histidine-maltose shell as novel type of nanoparticles for synapse and memory protection. Nanomedicine17, 198–209 (2019).
  • Chen Q , DuY, ZhangKet al. Tau-targeted multifunctional nanocomposite for combinational therapy of Alzheimer’s disease. ACS Nano12(2), 1321–1338 (2018).
  • Karaboga MNS , SezgintürkMK. Analysis of tau-441 protein in clinical samples using rGO/AuNP nanocomposite-supported disposable impedimetric neuro-biosensing platform: towards Alzheimer’s disease detection. Talanta219, 121257 (2020).
  • Zhao Y , CaiJ, LiuZet al. Nanocomposites inhibit the formation, mitigate the neurotoxicity, and facilitate the removal of β-amyloid aggregates in Alzheimer’s disease mice. Nano Lett.19(2), 674–683 (2018).
  • Sarin H . Overcoming the challenges in the effective delivery of chemotherapies to CNS solid tumors. Ther. Deliv.1(2), 289–305 (2010).
  • Chen Y , DalwadiG, BensonH. Drug delivery across the blood–brain barrier. Curr. Drug Deliv.1(4), 361–376 (2004).
  • Kang X , ChenH, LiSet al. Magnesium lithospermate B loaded PEGylated solid lipid nanoparticles for improved oral bioavailability. Colloids Surf. B Biointerf.161, 597–605 (2018).
  • Vakilinezhad MA , AminiA, JavarHAet al. Nicotinamide loaded functionalized solid lipid nanoparticles improves cognition in Alzheimer’s disease animal model by reducing tau hyperphosphorylation. DARU J. Pharm. Sci.26(2), 165–177 (2018).
  • Ghasemiyeh P , Mohammadi-SamaniS. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages. Res. Pharm. Sci.13(4), 288 (2018).
  • Topal GR , MészárosM, PorkolábGet al. ApoE-targeting increases the transfer of solid lipid nanoparticles with donepezil cargo across a culture model of the blood–brain barrier. Pharmaceutics13(1), 38 (2021).
  • Shankar PD , ShobanaS, KaruppusamyIet al. A review on the biosynthesis of metallic nanoparticles (gold and silver) using bio-components of microalgae: formation mechanism and applications. Enzyme Microb. Technol.95, 28–44 (2016).
  • Kim Y , ParkJ-H, LeeHet al. How do the size, charge and shape of nanoparticles affect amyloid β aggregation on brain lipid bilayer? Sci. Rep. 6(1), 1–14 (2016).
  • Gao N , SunH, DongKet al. Gold-nanoparticle-based multifunctional amyloid-β inhibitor against Alzheimer’s disease. Chem. A Eur. J.21(2), 829–835 (2015).
  • Sonawane SK , AhmadA, ChinnathambiS. Protein-capped metal nanoparticles inhibit tau aggregation in Alzheimer’s disease. ACS Omega4(7), 12833–12840 (2019).
  • Javdani N , RahpeymaSS, GhasemiYet al. Effect of superparamagnetic nanoparticles coated with various electric charges on α-synuclein and β-amyloid proteins fibrillation process. Int. J. Nanomed.14, 799 (2019).
  • Ahmed ME , KhanMM, JavedHet al. Amelioration of cognitive impairment and neurodegeneration by catechin hydrate in rat model of streptozotocin-induced experimental dementia of Alzheimer’s type. Neurochem. Int.62(4), 492–501 (2013).
  • Prakash D , SudhandiranG. Dietary flavonoid fisetin regulates aluminium chloride-induced neuronal apoptosis in cortex and hippocampus of mice brain. J. Nut. Biochem.26(12), 1527–1539 (2015).
  • Khan H , AminS, KamalMAet al. Flavonoids as acetylcholinesterase inhibitors: current therapeutic standing and future prospects. Biomed. Pharmacother.101, 860–870 (2018).
  • Nabavi SF , BraidyN, HabtemariamSet al. Neuroprotective effects of chrysin: from chemistry to medicine. Neurochem. Int.90, 224–231 (2015).
  • Kim DH , KimS, JeonSJet al. Tanshinone I enhances learning and memory, and ameliorates memory impairment in mice via the extracellular signal-regulated kinase signalling pathway. British J. Pharmacol.158(4), 1131–1142 (2009).
  • Uddin M , KabirM, NiazKet al. Molecular insight into the therapeutic promise of flavonoids against Alzheimer’s disease. Molecules25(6), 1267 (2020).
  • Kanubaddi KR , YangS-H, WuL-Wet al. Nanoparticle-conjugated nutraceuticals exert prospectively palliative of amyloid aggregation. Int. J. Nanomed.13, 8473 (2018).
  • Neves AR , QueirozJF, ReisS. Brain-targeted delivery of resveratrol using solid lipid nanoparticles functionalized with apolipoprotein E. J. Nanobiotechnol.14(1), 1–11 (2016).
  • Qi Y , GuoL, JiangYet al. Brain delivery of quercetin-loaded exosomes improved cognitive function in AD mice by inhibiting phosphorylated tau-mediated neurofibrillary tangles. Drug Deliv.27(1), 745–755 (2020).
  • Pinheiro R , GranjaA, LoureiroJet al. RVG29-functionalized lipid nanoparticles for quercetin brain delivery and Alzheimer’s disease. Pharm. Res.37(7), 1–12 (2020).
  • Pinheiro R , GranjaA, LoureiroJet al. Quercetin lipid nanoparticles functionalized with transferrin for Alzheimer’s disease. Eur. J. Pharm. Sci.148, 105314 (2020).
  • Ovais M , ZiaN, AhmadIet al. Phyto-therapeutic and nanomedicinal approaches to cure Alzheimer’s disease: present status and future opportunities. Front. Aging Neurosci.10, 284 (2018).
  • Meng Q , WangA, HuaHet al. Intranasal delivery of huperzine A to the brain using lactoferrin-conjugated N-trimethylated chitosan surface-modified PLGA nanoparticles for treatment of Alzheimer’s disease. Int. J. Nanomed.13, 705 (2018).
  • Li C , TuG, LuoCet al. Effects of rhynchophylline on the hippocampal miRNA expression profile in ketamine-addicted rats. Prog. Neuropsychopharmacol. Biol. Psychiatry.86, 379–389 (2018).
  • Shao H , MiZ, JiWGet al. Rhynchophylline protects against the amyloid β-induced increase of spontaneous discharges in the hippocampal CA1 region of rats. Neurochem. Res.40(11), 2365–2373 (2015).
  • Fu AK , HungKW, HuangHet al. Blockade of EphA4 signaling ameliorates hippocampal synaptic dysfunctions in mouse models of Alzheimer’s disease. Proc. Natl Acad. Sci. USA111(27), 9959–9964 (2014).
  • Xu R , WangJ, XuJet al. Rhynchophylline loaded-mPEG-PLGA nanoparticles coated with Tween-80 for preliminary study in Alzheimer’s disease. Int. J. Nanomed.15, 1149 (2020).
  • Lohan S , RazaK, MehtaSet al. Anti-Alzheimer’s potential of berberine using surface decorated multi-walled carbon nanotubes: a preclinical evidence. Int. J. Pharm.530(1–2), 263–278 (2017).
  • Mishra S , PalaniveluK. The effect of curcumin (turmeric) on Alzheimer’s disease: an overview. Ann. Indian Acad. Neurol.11(1), 13 (2008).
  • Yang F , LimGP, BegumANet al. Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J. Biol. Chem.280(7), 5892–5901 (2005).
  • Baum L , LamCWK, CheungSK-Ket al. Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease. J. Clin. Psychopharmacol.28(1), 110–113 (2008).
  • Collins AE , SalehTM, KalischBE. Naturally occurring antioxidant therapy in Alzheimer’s disease. Antioxidants (Basel)11(2), 213 (2022).
  • Sathya S , ShanmuganathanB, DeviKP. Deciphering the anti-apoptotic potential of α-bisabolol loaded solid lipid nanoparticles against Aβ induced neurotoxicity in neuro-2a cells. Colloids Surf. B Biointerf.190, 110948 (2020).
  • Brenza TM , GhaisasS, RamirezJEVet al. Neuronal protection against oxidative insult by polyanhydride nanoparticle-based mitochondria-targeted antioxidant therapy. Nanomedicine13(3), 809–820 (2017).
  • Jose S , SowmyaS, CinuTet al. Surface modified PLGA nanoparticles for brain targeting of bacoside-A. Eur. J. Pharm. Sci.63, 29–35 (2014).
  • Aalinkeel R , KutscherHL, SinghAet al. Neuroprotective effects of a biodegradable poly(lactic-co-glycolic acid)-ginsenoside Rg3 nanoformulation: a potential nanotherapy for Alzheimer’s disease? J. Drug Target. 26(2), 182–193 (2018).
  • Cano A , EttchetoM, ChangJ-Het al. Dual-drug loaded nanoparticles of epigallocatechin-3-gallate (EGCG)/ascorbic acid enhance therapeutic efficacy of EGCG in a APPswe/PS1dE9 Alzheimer’s disease mice model. J. Control. Rel.301, 62–75 (2019).
  • Doggui S , SahniJK, ArseneaultMet al. Neuronal uptake and neuroprotective effect of curcumin-loaded PLGA nanoparticles on the human SK-N-SH cell line. J. Alzheimers Dis.30(2), 377–392 (2012).
  • Mathew A , FukudaT, NagaokaYet al. Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer’s disease. PLOS ONE7(3), e32616 (2012).
  • Hu B , DaiF, FanZet al. Nanotheranostics: congo red/rutin-MNPs with enhanced magnetic resonance imaging and H2O2-responsive therapy of Alzheimer’s disease in APPswe/PS1dE9 transgenic mice. Adv. Mater.27(37), 5499–5505 (2015).
  • Jaruszewski KM , CurranGL, SwaminathanSKet al. Multimodal nanoprobes to target cerebrovascular amyloid in Alzheimer’s disease brain. Biomaterials35(6), 1967–1976 (2014).
  • Zhang C , WanX, ZhengXet al. Dual-functional nanoparticles targeting amyloid plaques in the brains of Alzheimer’s disease mice. Biomaterials35(1), 456–465 (2014).
  • Poplawski SG , GarbettKA, McMahanRLet al. An antisense oligonucleotide leads to suppressed transcription of Hdac2 and long-term memory enhancement. Mol. Ther. Nucleic Acids19, 1399–1412 (2020).
  • Mourtas S , LazarAN, MarkoutsaEet al. Multifunctional nanoliposomes with curcumin-lipid derivative and brain targeting functionality with potential applications for Alzheimer disease. European J. Med. Chem.80, 175–183 (2014).
  • Papadia K , MarkoutsaE, MourtasSet al. Multifunctional LUV liposomes decorated for BBB and amyloid targeting. in vitro proof-of-concept. Eur. J. Pharm. Sci.101, 140–148 (2017).
  • Mourtas S , ChristodoulouP, KlepetsanisPet al. Preparation of benzothiazolyl-decorated nanoliposomes. Molecules24(8), 1540 (2019).
  • Siegemund T , PaulkeB-R, SchmiedelHet al. Thioflavins released from nanoparticles target fibrillar amyloid β in the hippocampus of APP/PS1 transgenic mice. Int. J. Dev. Neurosci.24(2-3), 195–201 (2006).
  • Glick D , BarthS, MacleodKF. Autophagy: cellular and molecular mechanisms. J. Pathol.221(1), 3–12 (2010).
  • Bateman RJ , MunsellLY, MorrisJCet al. Human amyloid-β synthesis and clearance rates as measured in cerebrospinal fluid in vivo. Nat. Med.12(7), 856–861 (2006).
  • Nilsson P , SaidoTC. Dual roles for autophagy: degradation and secretion of Alzheimer’s disease Aβ peptide. BioEssays36(6), 570–578 (2014).
  • Nixon RA . Autophagy, amyloidogenesis and Alzheimer disease. J. Cell Sci.120(23), 4081–4091 (2007).
  • Lee J-A , BeigneuxA, AhmadSTet al. ESCRT-III dysfunction causes autophagosome accumulation and neurodegeneration. Curr. Biol.17(18), 1561–1567 (2007).
  • Yamazaki Y , TakahashiT, HijiMet al. Immunopositivity for ESCRT-III subunit CHMP2B in granulovacuolar degeneration of neurons in the Alzheimer’s disease hippocampus. Neurosci. Lett.477(2), 86–90 (2010).
  • Saido T , LeissringMA. Proteolytic degradation of amyloid β-protein. Harb. Perspect.2(6), a006379 (2012).
  • Nixon RA , WegielJ, KumarAet al. Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J. Neuropathol. Exp. Neurol.64(2), 113–122 (2005).
  • Yu WH , CuervoAM, KumarAet al. Macroautophagy – a novel β-amyloid peptide-generating pathway activated in Alzheimer’s disease. J. Cell Biol.171(1), 87–98 (2005).
  • Nilsson P , LoganathanK, SekiguchiMet al. Aβ secretion and plaque formation depend on autophagy. Cell Rep.5(1), 61–69 (2013).
  • Nixon RA . The role of autophagy in neurodegenerative disease. Nat. Med.19(8), 983–997 (2013).
  • Sarkar S . Role of autophagy in neurodegenerative diseases. Curr. Sci.101(4), 514–519 (2011).
  • Zhang L , WangL, WangRet al. Evaluating the effectiveness of GTM-1, rapamycin, and carbamazepine on autophagy and Alzheimer disease. Med. Sci. Monit.23, 801 (2017).
  • Steele JW , GandyS. Latrepirdine (Dimebon®), a potential Alzheimer therapeutic, regulates autophagy and neuropathology in an Alzheimer mouse model. Autophagy9(4), 617–618 (2013).
  • Forlenza OV , de PaulaVJ, Machado-VieiraRet al. Does lithium prevent Alzheimer’s disease? Drugs Aging 29(5), 335–342 (2012).
  • Matsunaga S , KishiT, AnnasPet al. Lithium as a treatment for Alzheimer’s disease: a systematic review and meta-analysis. J. Alzheimers Dis.48(2), 403–410 (2015).
  • Matsunaga S , KishiT, IwataN. Memantine monotherapy for Alzheimer’s disease: a systematic review and meta-analysis. PLOS ONE10(4), e0123289 (2015).
  • Song G , LiY, LinLet al. Anti-autophagic and anti-apoptotic effects of memantine in a SH-SY5Y cell model of Alzheimer’s disease via mammalian target of rapamycin-dependent and-independent pathways. Mol. Med. Rep.12(5), 7615–7622 (2015).
  • Liu D , PittaM, JiangHet al. Nicotinamide forestalls pathology and cognitive decline in Alzheimer mice: evidence for improved neuronal bioenergetics and autophagy procession. Neurobiol. Aging34(6), 1564–1580 (2013).
  • Gong B , PanY, VempatiPet al. Nicotinamide riboside restores cognition through an upregulation of proliferator-activated receptor-γ coactivator 1α regulated β-secretase 1 degradation and mitochondrial gene expression in Alzheimer’s mouse models. Neurobiol. Aging34(6), 1581–1588 (2013).
  • Kickstein E , KraussS, ThornhillPet al. Biguanide metformin acts on tau phosphorylation via mTOR/protein phosphatase 2A (PP2A) signaling. Proc. Natl Acad Sci. USA107(50), 21830–21835 (2010).
  • Spilman P , PodlutskayaN, HartMJet al. Correction: inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-β levels in a mouse model of Alzheimer’s disease. PLOS ONE6(11), e9979(2011).
  • Vingtdeux V , GilibertoL, ZhaoHet al. AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-β peptide metabolism. J. Biol. Chem.285(12), 9100–9113 (2010).
  • Porquet D , Griñán-FerréC, FerrerIet al. Neuroprotective role of trans-resveratrol in a murine model of familial Alzheimer’s disease. J. Alzheimers Dis.42(4), 1209–1220 (2014).
  • Zhu Z , YanJ, JiangWet al. Arctigenin effectively ameliorates memory impairment in Alzheimer’s disease model mice targeting both β-amyloid production and clearance. J. Neurosci.33(32), 13138–13149 (2013).
  • Deng M , HuangL, NingBet al. β-asarone improves learning and memory and reduces acetyl cholinesterase and beta-amyloid 42 levels in APP/PS1 transgenic mice by regulating Beclin-1-dependent autophagy. Brain Res.1652, 188–194 (2016).
  • Grossi C , RigacciS, AmbrosiniSet al. The polyphenol oleuropein aglycone protects TgCRND8 mice against Aß plaque pathology. PLOS ONE8(8), e71702 (2013).
  • Martorell M , FormanK, CastroNet al. Potential therapeutic effects of oleuropein aglycone in Alzheimer’s disease. Curr. Pharm. Biotechnol.17(11), 994–1001 (2016).
  • Inestrosa N , Tapia-RojasC, GriffithTet al. Tetrahydrohyperforin prevents cognitive deficit, Aβ deposition, tau phosphorylation and synaptotoxicity in the APPswe/PSEN1ΔE9 model of Alzheimer’s disease: a possible effect on APP processing. Trans. Psychiatry1(7), e20 (2011).
  • Cavieres VA , GonzálezA, MuñozVCet al. Tetrahydrohyperforin inhibits the proteolytic processing of amyloid precursor protein and enhances its degradation by Atg5-dependent autophagy. PLOS ONE10(8), e0136313 (2015).
  • Sarkar S , DaviesJE, HuangZet al. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and α-synuclein. J. Biol. Chem.282(8), 5641–5652 (2007).
  • Krüger U , WangY, KumarSet al. Autophagic degradation of tau in primary neurons and its enhancement by trehalose. Neurobiol. Aging33(10), 2291–2305 (2012).
  • Luo Q , LinY-X, YangP-Pet al. A self-destructive nanosweeper that captures and clears amyloid β-peptides. Nat. Commun.9(1), 1–12 (2018).
  • Mytych J , SolekP, BedzinskaAet al. Klotho-mediated changes in the expression of Atg13 alter formation of ULK1 complex and thus initiation of ER- and Golgi-stress response mediated autophagy. Apoptosis25, 57–72 (2020).
  • Mytych J , SolekP, KoziorowskiMet al. Klotho modulates ER-mediated signaling crosstalk between prosurvival autophagy and apoptotic cell death during LPS challenge. Apoptosis24, 95–107 (2019).
  • Chen K , SunZ. Autophagy plays a critical role in Klotho gene deficiency-induced arterial stiffening and hypertension. J. Mol. Med.97, 1615–1625 (2019).
  • Li D , JingD, LiuZet al. Enhanced expression of secreted alpha-Klotho in the hippocampus alters nesting behavior and memory formation in mice. Front. Cell. Neurosci.13, 133 (2019).
  • Fung TY , IyaswamyA, SreenivasmurthySGet al. Klotho an autophagy stimulator as a potential therapeutic target for Alzheimer’s disease: a review. Biomedicines10(3), 705 (2022).
  • Nixon RA . The aging lysosome: an essential catalyst for late-onset neurodegenerative diseases. Biochim. Biophys. Acta Proteins Proteom.1868, 140443 (2020).
  • Fernandez AF , SebtiS, WeiYet al. Disruption of the beclin 1-BCL2 autophagy regulatory complex promotes longevity in mice. Nature558, 136–140 (2018).
  • Abraham CR , MullenPC, Tucker-ZhouTet al. Klotho is a neuroprotective and cognition-enhancing protein. Vitam. Horm.101, 215–238 (2016).
  • Mytych J . Klotho and neurons: mutual crosstalk between autophagy, endoplasmic reticulum, and inflammatory response. Neural Regen. Res.16, 1542–1543 (2021).
  • Zhang F-Q , JiangJ-L, ZhangJ-Tet al. Current status and future prospects of stem cell therapy in Alzheimer’s disease. Neural Regen. Res.15(2), 242 (2020).
  • Reddy PH . Current status of stem cell research: an editorial. Biochim Biophys Acta Mol Basis Dis.1866(4), 165635 (2020).
  • Zhang L , DongZ-F, ZhangJ-Y. Immunomodulatory role of mesenchymal stem cells in Alzheimer’s disease. Life Sci.246, 117405 (2020).
  • Farzamfar S , NazeriN, SalehiMet al. Will nanotechnology bring new hope for stem cell therapy? Cells Tissues Organs 206(4–5), 229–241 (2018).
  • Ramalingam M , HajAE, WebsterTJet al. A special section on the role of nanotechnology in stem cell research. J. Nanosci. Nanotechnol.16(9), 8859–8861 (2016).
  • Santos T , MaiaJ, AgasseFet al. Nanomedicine boosts neurogenesis: new strategies for brain repair. Integr. Biol.4(9), 973–981 (2012).
  • Teleanu DM , ChircovC, GrumezescuAMet al. Neurotoxicity of nanomaterials: an up-to-date overview. Nanomaterials9(1), 96 (2019).
  • Bhabra G , SoodA, FisherBet al. Nanoparticles can cause DNA damage across a cellular barrier. Nat. Nanotechnol.4(12), 876–883 (2009).
  • Formicola B , CoxA, DalMagro Ret al. Nanomedicine for the treatment of Alzheimer’s disease. J. Biomed. Nanotechnol.15(10), 1997–2024 (2019).
  • Teleanu DM , ChircovC, GrumezescuAMet al. Impact of nanoparticles on brain health: an up to date overview. J. Clin. Med.7(12), 490 (2018).
  • Carro CE , PilozziAR, HuangX. Nanoneurotoxicity and potential nanotheranostics for Alzheimer’s disease. EC Pharmacol. Toxicol.7(12), 1–7 (2019).
  • Kononenko V , NaratM, DrobneD. Nanoparticle interaction with the immune system. Arh. Hig. Rada Toksikol.66(2), 97–108 (2015).
  • Amor S , PeferoenLA, VogelDYet al. Inflammation in neurodegenerative diseases – an update. Immunology142(2), 151–166 (2014).
  • Yang X , HeC, LiJet al. Uptake of silica nanoparticles: neurotoxicity and Alzheimer-like pathology in human SK-N-SH and mouse neuro2a neuroblastoma cells. Toxicol. Lett.229(1), 240–249 (2014).
  • Sikorska K , GrądzkaI, SochanowiczBet al. Diminished amyloid-β uptake by mouse microglia upon treatment with quantum dots, silver or cerium oxide nanoparticles: nanoparticles and amyloid-β uptake by microglia. Hum. Exp. Toxicol.39(2), 147–158 (2020).
  • St. George-Hyslop PH , MorrisJC. Will anti-amyloid therapies work for Alzheimer’s disease?Lancet372(9634), 180–182 (2008).
  • Mangialasche F , SolomonA, WinbladBet al. Alzheimer’s disease: clinical trials and drug development. Lancet Neurol.9(7), 702–716 (2010).
  • Marciani DJ . Alzheimer’s disease vaccine development: a new strategy focusing on immune modulation. J. Neuroimmunol.287, 54–63 (2015).
  • Ballard C , LangI. Alcohol and dementia: a complex relationship with potential for dementia prevention. Lancet Public Health3(3), e103–e104 (2018).
  • Fazil M , MdS, HaqueSet al. Development and evaluation of rivastigmine loaded chitosan nanoparticles for brain targeting. Eur. J. Pharm. Sci.47(1), 6–15 (2012).
  • Joshi SA , ChavhanSS, SawantKK. Rivastigmine-loaded PLGA and PBCA nanoparticles: preparation, optimization, characterization, in vitro and pharmacodynamic studies. Eur. J. Pharm. Biopharm.76(2), 189–199 (2010).
  • Hanafy AS , FaridRM, ElGamalSS. Complexation as an approach to entrap cationic drugs into cationic nanoparticles administered intranasally for Alzheimer’s disease management: preparation and detection in rat brain. Drug Dev. Ind. Pharm.41(12), 2055–2068 (2015).
  • Misra S , ChopraK, SinhaVet al. Galantamine-loaded solid-lipid nanoparticles for enhanced brain delivery: preparation, characterization, in vitro and in vivo evaluations. Drug Deliv.23(4), 1434–1443 (2016).
  • Li W , ZhouY, ZhaoNet al. Pharmacokinetic behavior and efficiency of acetylcholinesterase inhibition in rat brain after intranasal administration of galanthamine hydrobromide loaded flexible liposomes. Env. Toxicol. Pharmacol.34(2), 272–279 (2012).
  • Wilson B , SamantaMK, SanthiKet al. Targeted delivery of tacrine into the brain with polysorbate 80-coated poly(n-butylcyanoacrylate) nanoparticles. Eur. J. Pharm. Biopharm.70(1), 75–84 (2008).
  • Luppi B , BigucciF, CoraceGet al. Albumin nanoparticles carrying cyclodextrins for nasal delivery of the anti-Alzheimer drug tacrine. Eur. J. Pharm. Sci.44(4), 559–565 (2011).
  • Md S , AliM, AliRet al. Donepezil nanosuspension intended for nose to brain targeting: in vitro and in vivo safety evaluation. Int. J. Biol. Macromol.67, 418–425 (2014).
  • Shi M , ChuF, ZhuF, ZhuJ. Impact of anti-amyloid-β monoclonal antibodies on the pathology and clinical profile of Alzheimer’s disease: a focus on aducanumab and lecanemab. Front. Aging Neurosci.14, 870517 (2022).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.