152
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Ultrasound-Mediated In Vivo Biodistribution of Coumarin-Labeled Sorafenib-Loaded Liposome-Based Nanotheranostic System

, ORCID Icon, , & ORCID Icon
Pages 1909-1927 | Received 30 May 2022, Accepted 07 Dec 2022, Published online: 25 Jan 2023

References

  • Berkes C, Franco J, Lawson M et al. Kinase inhibitor library screening identifies the cancer therapeutic sorafenib and structurally similar compounds as strong inhibitors of the fungal pathogen Histoplasma capsulatum. Antibiotics 10(10), 1223 (2021).
  • Iacobazzi RM, Vischio F, Arduino I et al. Magnetic implants in vivo guiding sorafenib liver delivery by superparamagnetic solid lipid nanoparticles. J. Colloid. Interface Sci. 608, 239–254 (2022).
  • Ye H, Zhou L, Jin H, Chen Y, Cheng D, Jiang Y. Sorafenib-loaded long-circulating nanoliposomes for liver cancer therapy. BioMed. Res. Int. 2020, 1–12 (2020).
  • Younis MA, Khalil IA, Elewa YH, Kon Y, Harashima H. Ultra-small lipid nanoparticles encapsulating sorafenib and midkine-siRNA selectively-eradicate sorafenib-resistant hepatocellular carcinoma in vivo. J. Control. Rel. 331, 335–349 (2021).
  • Park SY, Kang Z, Thapa P et al. Development of sorafenib loaded nanoparticles to improve oral bioavailability using a quality by design approach. Int. J. Pharm. 566, 229–238 (2019).
  • Park J-H, Baek M-J, Lee J-Y, Kim K-T, Cho H-J, Kim D-D. Preparation and characterization of sorafenib-loaded microprecipitated bulk powder for enhancing oral bioavailability. Int. J. Pharm. 589, 119836 (2020).
  • Yang S, Zhang B, Gong X, Wang T, Liu Y, Zhang N. In vivo biodistribution, biocompatibility, and efficacy of sorafenib-loaded lipid-based nanosuspensions evaluated experimentally in cancer. Int. J. Nanomed. 11, 2329 (2016).
  • Su Y, Wang K, Li Y et al. Sorafenib-loaded polymeric micelles as passive targeting therapeutic agents for hepatocellular carcinoma therapy. Nanomedicine 13(9), 1009–1023 (2018).
  • Fan G, Wei X, Xu X. Is the era of sorafenib over? A review of the literature. Ther. Adv. Med. Oncol. 12, 1758835920927602 (2020).
  • Gonzalez-Valdivieso J, Girotti A, Schneider J, Arias FJ. Advanced nanomedicine and cancer: challenges and opportunities in clinical translation. Int. J. Pharm. 599, 120438 (2021).
  • Patel K, Bothiraja C, Mali A, Kamble R. Investigation of sorafenib tosylate loaded liposomal dry powder inhaler for the treatment of non-small-cell lung cancer. Part. Sci. Technol. 39(8), 990–999 (2021).
  • Ruman U, Buskaran K, Pastorin G, Masarudin MJ, Fakurazi S, Hussein MZ. Synthesis and characterization of chitosan-based nanodelivery systems to enhance the anticancer effect of sorafenib drug in hepatocellular carcinoma and colorectal adenocarcinoma cells. Nanomaterials 11(2), 497 (2021).
  • Zahednezhad F, Mojarrad JS, Zakeri-Milani P et al. Surface modification with cholesteryl acetyl carnitine, a novel cationic agent, elevates cancer cell uptake of the PEGylated liposomes. Int. J. Pharm. 609, 121148 (2021).
  • Li J, Li Z, Gao Y et al. Effect of a drug delivery system made of quercetin formulated into PEGylation liposomes on cervical carcinoma in vitro and in vivo. J. Nanomater. 2021, 12 (2021).
  • Stylianopoulos T. EPR-effect: utilizing size-dependent nanoparticle delivery to solid tumors. Ther. Deliv. 4(4), 421–423 (2013).
  • Fan Y, Marioli M, Zhang K. Analytical characterization of liposomes and other lipid nanoparticles for drug delivery. J. Pharm. Biomed. Anal. 192, 113642 (2021).
  • Li Z, Zhang T, Zhang M, Hu W. Detection of folic acid and imaging of folate receptor overexpressed cancer cells via a far-red silver nanoclusters with baseline resolved between excitation and emission. Dyes Pigments 198, 109984 (2022).
  • Luiz MT, Dutra JAP, de Cássia Ribeiro T et al. Folic acid-modified curcumin-loaded liposomes for breast cancer therapy. Colloid. Surf. Physicochem. Eng. Asp. 645, 128935 (2022).
  • Silva CO, Pinho JO, Lopes JM, Almeida AJ, Gaspar MM, Reis C. Current trends in cancer nanotheranostics: metallic, polymeric, and lipid-based systems. Pharmaceutics 11(1), 22 (2019).
  • Choi J-S, Park J-W, Seu Y-B, Doh K-O. Enhanced efficacy of folate-incorporated cholesteryl doxorubicin liposome in folate receptor abundant cancer cell. J. Drug Deliv. Sci. Technol. 62, 102385 (2021).
  • Gao W. Preparation and evaluation of folate receptor mediated targeting liposomes. In: Liposome-Based Drug Deliv. Syst. Lu WL, Qi XR ( Eds). Springer, Heidelberg, Germany, 167–178 (2021).
  • Yang Y, Zhao Z, Xie C, Zhao Y. Dual-targeting liposome modified by glutamic hexapeptide and folic acid for bone metastatic breast cancer. Chem. Phys. Lipids 228, 104882 (2020).
  • Münter R, Kristensen K, Pedersbæk D, Andresen TL, Simonsen JB, Larsen JB. Quantitative methods for investigating dissociation of fluorescently labeled lipids from drug delivery liposomes. In: Nanotechnology Characterization Tools for Tissue Engineering and Medical Therapy. Kumar C (Ed.).Springer, Heidelberg, Germany, 333–359 (2019).
  • Shuai Q, Zhao G, Zhang X, Yu B, Lee RJ, Su W-K. Selection of fluorescent dye for tracking biodistribution of paclitaxel in live imaging. Colloid. Surf. B Biointerfaces 181, 872–878 (2019).
  • Chen Y, Li L, Chen W, Chen H, Yin J. Near-infrared small molecular fluorescent dyes for photothermal therapy. Chin. Chem. Lett. 30(7), 1353–1360 (2019).
  • Bandi VG, Luciano MP, Saccomano M et al. Targeted multicolor in vivo imaging over 1,000 nm enabled by nonamethine cyanines. Nat. Methods 19(3), 353–358 (2022).
  • Kala SG, Chinni S. Bioavailability enhancement of vitamin E TPGS liposomes of nintedanib esylate: formulation optimization, cytotoxicity and pharmacokinetic studies. Drug Deliv. Transl. Res. 12(11), 2856–2864 (2022).
  • Lozano N, Al-Ahmady ZS, Beziere NS, Ntziachristos V, Kostarelos K. Monoclonal antibody-targeted PEGylated liposome-ICG encapsulating doxorubicin as a potential theranostic agent. Int. J. Pharm. 482(1-2), 2–10 (2015).
  • Yang Q, Zhou Y, Chen J, Huang N, Wang Z, Cheng Y. Gene therapy for drug-resistant glioblastoma via lipid-polymer hybrid nanoparticles combined with focused ultrasound. Int. J. Nanomed. 16, 185 (2021).
  • Sun S, Wang P, Sun S, Liang X. Applications of micro/nanotechnology in ultrasound-based drug delivery and therapy for tumor. Curr. Med. Chem. 28(3), 525–547 (2021).
  • Wei P, Cornel EJ, Du J. Ultrasound-responsive polymer-based drug delivery systems. Drug Deliv. Transl. Res. 11(4), 1323–1339 (2021).
  • Mo L, Song JG, Lee H et al. PEGylated hyaluronic acid-coated liposome for enhanced in vivo efficacy of sorafenib via active tumor cell targeting and prolonged systemic exposure. Nanomed. Nanotechnol. Biol. Med. 14(2), 557–567 (2018).
  • Bicak B, Gunduz SK, Ozel AE. Advancements in cancer therapeutics: targeted drug delivery in cancer treatment. In: Handbook of Research on Advancements in Cancer Therapeutics. IGI Global, PA, USA, 382– 412 (2021).
  • Thomas E, Menon JU, Owen J et al. Ultrasound-mediated cavitation enhances the delivery of an EGFR-targeting liposomal formulation designed for chemo-radionuclide therapy. Theranostics 9(19), 5595 (2019).
  • Paris JL, Mannaris C, Cabañas MV et al. Ultrasound-mediated cavitation-enhanced extravasation of mesoporous silica nanoparticles for controlled-release drug delivery. Chem. Eng. J. 340, 2–8 (2018).
  • Jung O, Thomas A, Burks SR et al. Neuroinflammation associated with ultrasound-mediated permeabilization of the blood–brain barrier. Trends Neurosci. 45(6), 459–470 (2022).
  • Ahmed R, Ye J, Gerber SA, Linehan DC, Doyley MM. Preclinical imaging using single track location shear wave elastography: monitoring the progression of murine pancreatic tumor liver metastasis in vivo. IEEE Trans. Med. Imaging 39(7), 2426–2439 (2020).
  • Arsiwala TA, Sprowls SA, Blethen KE et al. Ultrasound-mediated disruption of the blood tumor barrier for improved therapeutic delivery. Neoplasia 23(7), 676–691 (2021).
  • Xia H, Yang D, He W et al. Ultrasound-mediated microbubbles cavitation enhanced chemotherapy of advanced prostate cancer by increasing the permeability of blood–prostate barrier. Transl. Oncol. 14(10), 101177 (2021).
  • De Matos MB, Deckers R, van Elburg B et al. Ultrasound-sensitive liposomes for triggered macromolecular drug delivery: formulation and in vitro characterization. Front. Pharmacol. 10, 1463 (2019).
  • Chen L, Zhang T, Sun S, Ren W, Wu A, Xu H. Ultrasound-mediated cavitation enhances EGFR-targeting PLGA-PEG nano-micelle delivery for triple-negative breast cancer treatment. Cancers 13(14), 3383 (2021).
  • Novell A, Al Sabbagh C, Escoffre J-M et al. Focused ultrasound influence on calcein-loaded thermosensitive stealth liposomes. Int. J. Hyperthermia 31(4), 349–358 (2015).
  • Lin X, Song J, Chen X, Yang H. Ultrasound-activated sensitizers and applications. Angew. Chem. Int. Ed. 59(34), 14212–14233 (2020).
  • Grigoletto A, Martinez G, Gabbia D et al. Folic acid-targeted paclitaxel–polymer conjugates exert selective cytotoxicity and modulate invasiveness of colon cancer cells. Pharmaceutics 13(7), 929 (2021).
  • Sohail MF, Javed I, Hussain SZ et al. Folate grafted thiolated chitosan enveloped nanoliposomes with enhanced oral bioavailability and anticancer activity of docetaxel. J. Mater. Chem. B 4(37), 6240–6248 (2016).
  • Kalaichelvi R, Jayachandren E. UV spectrophotometric estimation of sorafenib in pure and tablet dosage form. J. Pharm. Res. 4(10), 3705–3706 (2011).
  • Fatima S, Mansha A, Asim S, Shahzad A. Absorption spectra of coumarin and its derivatives. Chem. Pap. 76, 627–638 (2021).
  • Mannaris C, Bau L, Grundy M et al. Microbubbles, nanodroplets and gas-stabilizing solid particles for ultrasound-mediated extravasation of unencapsulated drugs: an exposure parameter optimization study. Ultrasound Med. Biol. 45(4), 954–967 (2019).
  • Luo Q, Yang J, Xu H et al. Sorafenib-loaded nanostructured lipid carriers for topical ocular therapy of corneal neovascularization: development, in-vitro and in vivo study. Drug Deliv. 29(1), 837–855 (2022).
  • Rehman M, Raza A, Khan JA, Zia MA. Laser responsive cisplatin-gold nano-assembly synergizes the effect of cisplatin with compliance. J. Pharm. Sci. 110(4), 1749–1760 (2021).
  • Hassan A, Ikram A, Raza A et al. Therapeutic potential of novel mastoparan-chitosan nanoconstructs against clinical MDR Acinetobacter baumannii: in silico, in vitro and in vivo studies. Int. J. Nanomed. 16, 3755 (2021).
  • Kanwal U, Bukhari NI, Rana NF et al. Doxorubicin-loaded quaternary ammonium palmitoyl glycol chitosan polymeric nanoformulation: uptake by cells and organs. Int. J. Nanomed. 14, 1 (2019).
  • Liao A-H, Lin K-H, Chuang H-C et al. Low-frequency dual-frequency ultrasound-mediated microbubble cavitation for transdermal minoxidil delivery and hair growth enhancement. Sci. Rep. 10(1), 1–12 (2020).
  • Ye D, Chen H. Focused ultrasound-mediated intranasal brain drug delivery technique (FUSIN). MethodsX 8, 101266 (2021).
  • Ahiwale RJ, Chellampillai B, Pawar AP. Investigation of novel sorafenib tosylate loaded biomaterial based nano-cochleates dispersion system for treatment of hepatocellular carcinoma. J. Dispers. Sci. Technol. 43(10), 1568–1586 (2021).
  • Patil O, Ingalagondi PK, Mathapati GB, Hanagodimath SM. Analysis of fluorescence quenching of coumarin derivative dye using Stern–Volmer plots. In: AIP Conference Proceedings. Appleton BR (Ed.). AIP Publishing LLC, 180007, NY, USA (2019).
  • Umbarkar M, Thakare S, Surushe T, Giri A, Chopade V. Formulation and evaluation of liposome by thin film hydration method. J. Drug Deliv. Ther. 11(1), 72–76 (2021).
  • Abshire C, Murad HY, Arora JS et al. Focused ultrasound-triggered release of tyrosine kinase inhibitor from thermosensitive liposomes for treatment of renal cell carcinoma. J. Pharm. Sci. 106(5), 1355–1362 (2017).
  • Moyano DB, Paraiso DA, González-Lezcano RA. Possible effects on health of ultrasound exposure, risk factors in the work environment and occupational safety review. In: Healthcare. Romero-Morales C, De-la-Cruz-Torres B, Valera-Garrido F (Eds). MDPI, Basel, Switzerland, 423 (2022).
  • O’Leary B, Vaezy S. Marketing clearance of diagnostic ultrasound systems and transducers. Guidance for Industry and Food and Drug Administration Staff (2019). https://www.fda.gov/media/71100/download
  • Fowlkes JB, Holland CK. Mechanical bioeffects from diagnostic ultrasound: AIUM consensus statement - introduction. J. Ultrasound Med. 19, 69–72 (2000).
  • Nelson TR, Fowlkes JB, Abramowicz JS, Church CC. Ultrasound biosafety considerations for the practicing sonographer and sonologist. J. Ultrasound Med. 28(2), 139–150 (2009).
  • Şen T, Tüfekçioğlu O, Koza Y. Mechanical index. Anatol. J. Cardiol. 15(4), 334 (2015).
  • Karthikesh MS, Yang X. The effect of ultrasound cavitation on endothelial cells. Exp. Biol. Med. 246(7), 758–770 (2021).
  • Omar MM, Hasan OA, Zaki RM, Eleraky NE. Externally triggered novel rapid-release sonosensitive folate-modified liposomes for gemcitabine: development and characteristics. Int. J. Nanomed. 16, 683 (2021).
  • Upputuri RTP, Mandal AKA. Mathematical modeling and release kinetics of green tea polyphenols released from casein nanoparticles. Iran. J. Pharm. Res. IJPR 18(3), 1137 (2019).
  • Khezri K, Saeedi M, Morteza-Semnani K, Akbari J, Hedayatizadeh-Omran A. A promising and effective platform for delivering hydrophilic depigmenting agents in the treatment of cutaneous hyperpigmentation: kojic acid nanostructured lipid carrier. Artif. Cells Nanomed. Biotechnol. 49(1), 38–47 (2021).
  • Yildirim H, Aydemir O, Balbaba M, Özercan İH, İlhan N. Comparison of the effect of topical bevacizumab and sorafenib in experimental corneal neovascularization. Cutan. Ocul. Toxicol. 39(3), 223–228 (2020).
  • Haghiralsadat F, Amoabediny G, Helder MN et al. A comprehensive mathematical model of drug release kinetics from nano-liposomes, derived from optimization studies of cationic PEGylated liposomal doxorubicin formulations for drug-gene delivery. Artif. Cells Nanomed. Biotechnol. 46(1), 169–177 (2018).
  • Soe ZC, Thapa RK, Ou W et al. Folate receptor-mediated celastrol and irinotecan combination delivery using liposomes for effective chemotherapy. Colloid. Surf. B Biointerfaces 170, 718–728 (2018).
  • Patil Y, Amitay Y, Ohana P, Shmeeda H, Gabizon A. Targeting of PEGylated liposomal mitomycin-C prodrug to the folate receptor of cancer cells: intracellular activation and enhanced cytotoxicity. J. Control. Rel. 225, 87–95 (2016).
  • Soga K, Tokuzen K, Tsuji K, Yamano T, Hyodo H, Kishimoto H. NIR bioimaging: development of liposome-encapsulated, rare-earth-doped Y2O3 nanoparticles as fluorescent probes. Eur. JIC 2010(18), 2673–2677 (2010).
  • Kodama T, Tomita N, Yagishita Y et al. Volumetric and angiogenic evaluation of antitumor effects with acoustic liposome and high-frequency ultrasound. Cancer Res. 71(22), 6957–6964 (2011).
  • Strumberg D. Preclinical and clinical development of the oral multikinase inhibitor sorafenib in cancer treatment. Drugs Today Barc. 41(12), 773–784 (2005).
  • Kane RC, Farrell AT, Saber H et al. Sorafenib for the treatment of advanced renal cell carcinoma. Clin. Cancer Res. 12(24), 7271–7278 (2006).
  • Sheng X, Huang T, Qin J et al. Preparation, pharmacokinetics, tissue distribution and antitumor effect of sorafenib-incorporating nanoparticles in vivo. Oncol. Lett. 14(5), 6163–6169 (2017).
  • Wang Y, Xie H, Ying K et al. Tuning the efficacy of esterase-activatable prodrug nanoparticles for the treatment of colorectal malignancies. Biomaterials 270, 120705 (2021).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.