216
Views
0
CrossRef citations to date
0
Altmetric
Review

Polylactic-Co-Glycolic Acid-Based Nanoparticles Modified with Peptides and Other Linkers Cross The Blood–Brain Barrier for Targeted Drug Delivery

ORCID Icon, , , , , , , & show all
Pages 125-143 | Received 08 Nov 2022, Accepted 06 Feb 2023, Published online: 14 Mar 2023

References

  • Ayub A , WettigS. An overview of nanotechnologies for drug delivery to the brain. Pharmaceutics14(2), 224 (2022).
  • Lombardo SM , SchneiderM, TureliAE, TureliNG. Key for crossing the BBB with nanoparticles: the rational design. Beilstein J. Nanotechnol.11(1), 866–883 (2020).
  • Furtado D , BjrnmalmM, AytonSet al. Overcoming the blood–brain barrier: the role of nanomaterials in treating neurological diseases. Adv. Mater.30(46), 1801362 (2018).
  • Markowicz Piasecka M , MarkiewiczA, DarlakPet al. Current chemical, biological, and physiological views in the development of successful brain-targeted pharmaceutics. Neurotherapeutics19(3), 942–976 (2022).
  • Mulvihill JJE , CunnaneEM, RossAM, DuskeyJT, TosiG, GrabruckerAM. Drug delivery across the blood–brain barrier: recent advances in the use of nanocarriers. Nanomedicine (Lond.)15(2), 205–214 (2020).
  • Xie JB , ShenZY, AnrakuY, KataokaK, ChenXY. Nanomaterial-based blood–brain-barrier (BBB) crossing strategies. Biomaterials224, 119491 (2019).
  • Santos SD , XavierM, LeiteDMet al. PAMAM dendrimers: blood–brain barrier transport and neuronal uptake after focal brain ischemia. J. Control. Rel.291, 65–79 (2018).
  • Li J , RothsteinSN, LittleSR, EdenbornHM, MeyerTY. The effect of monomer order on the hydrolysis of biodegradable poly(lactic-co-glycolic acid) repeating sequence copolymers. J. Am. Chem. Soc.134(39), 16352–16359 (2018).
  • Anthony C , AlexandraG, LaurentL, BenjaminD. PLGA-based nanoparticles for neuroprotective drug delivery in neurodegenerative diseases. Pharmaceutics13, 1042 (2021).
  • Dos Reis LG , LeeWH, SvolosMet al. Nanotoxicologic effects of PLGA nanoparticles formulated with a cell-penetrating peptide: searching for a safe pDNA delivery system for the lungs. Pharmaceutics11(1), 12 (2019).
  • Zhi KN , RajiB, NookalaARet al. PLGA nanoparticle-based formulations to cross the blood–brain barrier for drug delivery: from R&D to cGMP. Pharmaceutics13(4), 500 (2021).
  • Cui YX , SunJJ, HaoWYet al. Dual-target peptide-modified erythrocyte membrane-enveloped PLGA nanoparticles for the treatment of glioma. Front. Oncol.10, 563938 (2020).
  • Ogawa K , KatoN, KawakamiS. Recent strategies for targeted brain drug delivery. Chem. Pharm. Bull. (Tokyo)68(7), 567–582 (2020).
  • Diaz Perlas C , OllerSalvia B, SanchezNavarro M, TeixidoM, GiraltE. Branched BBB-shuttle peptides: chemoselective modification of proteins to enhance blood–brain barrier transport. Chem. Sci.9(44), 8409–8415 (2018).
  • Gonzalez Pizarro R , ParrottaG, VeraRet al. Ocular penetration of fluorometholone-loaded PEG-PLGA nanoparticles functionalized with cell-penetrating peptides. Nanomedicine (Lond.)14(23), 3089–3104 (2020).
  • Khan AR , YangXY, FuMF, ZhaiGX. Recent progress of drug nanoformulations targeting to brain. J. Control. Rel.291, 37–64 (2018).
  • Shi XD , SunYL, ShenLT. Preparation and in vivo imaging of a novel potential αvβ3 targeting PET/MRI dual-modal imaging agent. J. Radioanal. Nucl. Chem.331(9), 3485–3494 (2022).
  • Luo Y , YangH, ZhouYF, HuB. Dual and multi-targeted nanoparticles for site-specific brain drug delivery. J. Control. Rel.317, 195–215 (2020).
  • Yin MM , ZhengY, ChenFL. Pyraclostrobin-loaded poly(lactic-co-glycolic acid) nanospheres: preparation and characteristics. J. Integr. Agric.17(8), 1822–1832 (2018).
  • Han SL , WangWJ, WangSFet al. Multifunctional biomimetic nanoparticles loading baicalin for polarizing tumor-associated macrophages. Nanoscale11(42), 20206–20220 (2019).
  • Ding DW , ZhuQD. Recent advances of PLGA micro/nanoparticles for the delivery of biomacromolecular therapeutics. Mater. Sci. Eng. C Mater. Biol. Appl.92, 1041–1060 (2018).
  • Takeuchi I , TaniguchiY, TamuraY, OchiaiK, MakinoK. Effects of L-leucine on PLGA microparticles for pulmonary administration prepared using spray drying: fine particle fraction and phagocytotic ratio of alveolar macrophages. Colloids Surf. A Physicochem. Eng. Asp.537, 411–417 (2018).
  • El Maghawry E , TadrosMI, ElkheshenSA, AbdElbary A. Eudragit-S100 coated PLGA nanoparticles for colon targeting of etoricoxib: optimization and pharmacokinetic assessments in healthy human volunteers. Int. J. Nanomed.15, 3965–3980 (2020).
  • Ramezani M , RamezaniM, HashemiM. Current strategies in the modification of PLGA-based gene delivery system. Curr. Med. Chem.24(7), 728–739 (2018).
  • Piacentini E , RussoB, BazzarelliF, GiornoL. Membrane nanoprecipitation: from basics to technology development. J. Membr. Sci.654, 120564 (2022).
  • Swider E , KoshkinaO, TelJ, CruzLJ, de VriesIJM, SrinivasM. Customizing poly(lactic-co-glycolic acid) particles for biomedical applications. Acta Biomater.73, 38–51 (2018).
  • Rezvantalab S , DrudeNI, MoravejiMKet al. PLGA-based nanoparticles in cancer treatment. Front. Pharmacol.9, 1260 (2018).
  • Wei H , ZhangCM. Tuning the size of poly(lactic‐co‐glycolic acid) (PLGA) nanoparticles fabricated by nanoprecipitation. Biotechnol. J.13(1), 10.1002/biot.201700203 (2018).
  • Zhou X , SmithQR, LiuXL. Brain penetrating peptides and peptide–drug conjugates to overcome the blood–brain barrier and target CNS diseases. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.13(4), e1695 (2021).
  • Arvanitis CD , FerraroGB, JainRK. The blood–brain barrier and blood–tumour barrier in brain tumours and metastases. Nat. Rev. Cancer20(1), 26–41 (2019).
  • Dong XW . Current strategies for brain drug delivery. Theranostics8(6), 1481–1493 (2018).
  • Li S , XuQ, ZhaoLet al. Angiopep-2 modified cationic lipid-poly-lactic-co-glycolic acid delivery temozolomide and DNA repair inhibitor Dbait to achieve synergetic chemo-radiotherapy against glioma. J. Nanosci. Nanotechnol.19(12), 7539–7545 (2019).
  • Zhang L , LiuXG, LiuQDet al. A conditionally releasable ‘do not eat me’ CD47 signal facilitates microglia‐targeted drug delivery for the treatment of Alzheimer’s disease. Adv. Funct. Mater.30(24), 1910691 (2020).
  • Huang N , LuS, LiuXG, ZhuJ, WangYJ, LiuRT. PLGA nanoparticles modified with a BBB-penetrating peptide co-delivering Aβ generation inhibitor and curcumin attenuate memory deficits and neuropathology in Alzheimer’s disease mice. Oncotarget8(46), 81001–81013 (2017).
  • Falanga AP , MeloneP, CaglianiRet al. Design, synthesis and characterization of novel co-polymers decorated with peptides for the selective nanoparticle transport across the cerebral endothelium. Molecules23(7), 1655 (2018).
  • Kang T , JiangMY, JiangDet al. Enhancing glioblastoma-specific penetration by functionalization of nanoparticles with an iron-mimic peptide targeting transferrin/transferrin receptor complex. Mol. Pharm.12(8), 2947–2961 (2015).
  • Hua HC , ZhangXM, MuHJet al. RVG29-modified docetaxel-loaded nanoparticles for brain-targeted glioma therapy. Int. J. Pharm.543(1–2), 179–189 (2018).
  • Grover A , HiraniA, PathakY, SutariyaV. Brain-targeted delivery of docetaxel by glutathione-coated nanoparticles for brain cancer. AAPS PharmSciTech15(6), 1562–1568 (2014).
  • Li J , ZhangC, LiJet al. Brain delivery of NAP with PEG-PLGA nanoparticles modified with phage display peptides. Pharm. Res.30(7), 1813–1823 (2013).
  • Ilyas S , UllahNK, IlyasMet al. Mediating the fate of cancer cell uptake: dual-targeted magnetic nanovectors with biotin and folate surface ligands. ACS Biomater. Sci. Eng.6(11), 6138–6147 (2020).
  • Chen Q , GongT, LiuJet al. Synthesis, in vitro and in vivo characterization of glycosyl derivatives of ibuprofen as novel prodrugs for brain drug delivery. J. Drug Target.17(4), 318–328 (2009).
  • Gynther M , PurisE, PeltokangasSet al. Alzheimer’s disease phenotype or inflammatory insult does not alter function of L-type amino acid transporter 1 in mouse blood–brain barrier and primary astrocytes. Pharm. Res.36(1), 17 (2019).
  • Veszelka S , MeszarosM, PorkolabGet al. A triple combination of targeting ligands increases the penetration of nanoparticles across a blood–brain barrier culture model. Pharmaceutics14(1), 86 (2021).
  • Hoyos Ceballos GP , RuoziB, OttonelliIet al. PLGA-PEG-ANG-2 nanoparticles for blood–brain barrier crossing: proof-of-concept study. Pharmaceutics12(1), 72 (2020).
  • Sarkar G , CurranGL, MahlumEet al. A carrier for non-covalent delivery of functional beta-galactosidase and antibodies against amyloid plaques and IgM to the brain. PLOS ONE6(12), e28881 (2012).
  • Kazdal F , BahadoriF, CelikB, ErtasA, TopcuG. Inhibition of amyloid aggregation using optimized nano-encapsulated formulations of plant extracts with high metal chelator activities. Curr. Pharm. Biotechnol.21(8), 681–701 (2020).
  • Han HL , ZhangY, JinSZet al. Paclitaxel-loaded dextran nanoparticles decorated with RVG29 peptide for targeted chemotherapy of glioma: an in vivo study. New J. Chem.44(15), 5692–5701 (2020).
  • Wei XL , ZhanCY, ShenQet al. A D-peptide ligand of nicotine acetylcholine receptors for brain-targeted drug delivery. Angew. Chem. Int. Ed. Engl.54(10), 3066–3070 (2015).
  • Chai ZL , HuXF, WeiXLet al. A facile approach to functionalizing cell membrane-coated nanoparticles with neurotoxin-derived peptide for brain-targeted drug delivery. J. Control. Rel.264, 102–111 (2017).
  • Geldenhuys W , WehrungD, GroshevA, HiraniA, SutariyaV. Brain-targeted delivery of doxorubicin using glutathione-coated nanoparticles for brain cancers. Pharm. Dev. Technol.20(4), 497–506 (2015).
  • Weng HH , BejjankiNK, ZhangJet al. TAT peptide-modified cisplatin-loaded iron oxide nanoparticles for reversing cisplatin-resistant nasopharyngeal carcinoma. Biochem. Biophys. Res. Commun.511(3), 597–603 (2019).
  • Malhotra M , Tomaro-DuchesneauC, PrakashS. Synthesis of TAT peptide-tagged PEGylated chitosan nanoparticles for siRNA delivery targeting neurodegenerative diseases. Biomaterials34(4), 1270–1280 (2012).
  • Ruczynski J , RusieckaI, TureckaKet al. Transportan 10 improves the pharmacokinetics and pharmacodynamics of vancomycin. Sci. Rep.9(1), 3247 (2019).
  • Vasudevan SM , AshwanikumarN, KumarGSV. Peptide decorated glycolipid nanomicelles for drug delivery across the blood–brain barrier (BBB). Biomater. Sci.7(10), 4017–4021 (2019).
  • Li JW , FengL, FanLet al. Targeting the brain with PEG-PLGA nanoparticles modified with phage-displayed peptides. Biomaterials32(21), 4943–4950 (2011).
  • Kuo YC , LinPI, WangCC. Targeting nevirapine delivery across human brain microvascular endothelial cells using transferrin-grafted poly(lactide-co-glycolide) nanoparticles. Nanomedicine (Lond.)6(6), 1011–1026 (2011).
  • Liu ZD , ZhaoHN, ShuLXet al. Preparation and evaluation of baicalin-loaded cationic solid lipid nanoparticles conjugated with OX26 for improved delivery across the BBB. Drug Dev. Ind. Pharm.41(3), 353–361 (2015).
  • Boado RJ , PardridgeWM. Brain and organ uptake in the rhesus monkey in vivo of recombinant iduronidase compared to an insulin receptor antibody–iduronidase fusion protein. Mol. Pharm.14(4), 1271–1277 (2017).
  • Koch H , WeberYG. The glucose transporter type 1 (Glut1) syndromes. Epilepsy Behav.91, 90–93 (2019).
  • Li WP , ZhangL, ShenYF, DuJM. Research process of glucose transporter 1 in Alzheimer’s disease. China Med. Her.14(14), 36–39 (2017).
  • Peura L , MalmiojaK, HuttunenKet al. Design, synthesis and brain uptake of LAT1-targeted amino acid prodrugs of dopamine. Pharm. Res.30(10), 2523–2537 (2013).
  • Puris E , GyntherM, HuttunenJ, PetsaloA, HuttunenKM. L-type amino acid transporter 1 utilizing prodrugs: how to achieve effective brain delivery and low systemic exposure of drugs. J. Control. Rel.261, 93–104 (2017).
  • Hansen SN , TvedenNyborg P, LykkesfeldtJ. Does vitamin C deficiency affect cognitive development and function?Nutrients6(9), 3818–3846 (2014).
  • Dehaini D , FangRH, ZhangLF. Biomimetic strategies for targeted nanoparticle delivery. Bioeng. Transl. Med.1(1), 30–46 (2016).
  • Huang YY , ZhaoR. Targeted analysis of central nervous system using blood–brain barrier shuttle peptides. Chinese J. Anal. Chem.47(10), 1629–1638 (2019).
  • Linton MF , TaoH, LintonEF, YanceyPG. SR-BI: a multifunctional receptor in cholesterol homeostasis and atherosclerosis. Trends Endocrinol. Metab.28(6), 461–472 (2017).
  • Liu SL , ZhangW, ChenQQet al. Multifunctional nanozyme for multimodal imaging-guided enhanced sonodynamic therapy by regulating the tumor microenvironment. Nanoscale13(33), 14049–14066 (2021).
  • Mineo C . Lipoprotein receptor signalling in atherosclerosis. Cardiovasc. Res.116(7), 1254–1274 (2020).
  • Zhang C , LiuQF, ShaoXY, QianY, ZhangQZ. Phage-displayed peptide-conjugated biodegradable nanoparticles enhanced brain drug delivery. Mater. Lett.167, 213–217 (2016).
  • Sumbria RK . Targeting the transferrin receptor to develop erythropoietin for Alzheimer’s disease. Neural Regen. Res.15(12), 2251–2252 (2020).
  • Huey R , HawthorneS, McCarronP. The potential use of rabies virus glycoprotein-derived peptides to facilitate drug delivery into the central nervous system: a mini review. J. Drug Target.25(5), 379–385 (2016).
  • Hoskin JL , AlHasan Y, SabbaghMN. Nicotinic acetylcholine receptor agonists for the treatment of Alzheimer’s dementia: an update. Nicotine Tob. Res.21(3), 370–376 (2019).
  • Chung EP , CotterJD, PrakapenkaAVet al. Targeting small molecule delivery to the brain and spinal cord via intranasal administration of rabies virus glycoprotein (RVG29)-modified PLGA nanoparticles. Pharmaceutics12(2), 93 (2020).
  • Mogharbel BF , CardosoMA, IriodaACet al. Biodegradable nanoparticles loaded with levodopa and/or curcumin for treatment of Parkinson’s disease. Eur. J. Public Health31(Suppl. 2), ckab120.070 (2021).
  • Duro Castano A , LeiteDM, ForthJet al. Designing peptide nanoparticles for efficient brain delivery. Adv. Drug Deliv. Rev.160(72), 52–77 (2020).
  • Kitamatsu M , YuasaH, OhtsukiT, MichiueH. Complementary leucine zippering system for effective intracellular delivery of proteins by cell-penetrating peptides. Bioorg. Med. Chem.33, 116036 (2021).
  • Jank L , PintoEspinoza C, DuanYH, KochNolte F, MagnusT, RissiekB. Current approaches and future perspectives for nanobodies in stroke diagnostic and therapy. Antibodies (Basel)8(1), 5 (2019).
  • Alecou T , GiannakouMA, DamianouC. Amyloid β plaque reduction with antibodies crossing the blood–brain barrier, which was opened in 3 sessions of focused ultrasound in a rabbit model. J. Ultrasound Med.36(11), 2257–2270 (2017).
  • Carroll RT , BhatiaD, GeldenhuysWet al. Brain-targeted delivery of tempol-loaded nanoparticles for neurological disorders. J. Drug Target.18(9), 665–674 (2010).
  • Zhang WD , LiuQY, HaqqaniASet al. Differential expression of receptors mediating receptor-mediated transcytosis (RMT) in brain microvessels, brain parenchyma and peripheral tissues of the mouse and the human. Fluids Barriers CNS17(1), 47 (2020).
  • Nicolas J , MuraS, BrambillaD, MackiewiczN, CouvreurP. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem. Soc. Rev.42(3), 1147–1235 (2013).
  • Chen JF , JinJ, LiKQet al. Progresses and prospects of neuroprotective agents-loaded nanoparticles and biomimetic material in ischemic stroke. Front. Cell. Neurosci.11(16), 868323 (2022).
  • Li CW , QianJW, ChuYW. Advances in brain delivery systems based on biomimetic nanoparticles. ChemNanoMat8(6), e202200066 (2022).
  • Stuckey DW , ShahK. Stem cell-based therapies for cancer treatment: separating hope from hype. Nat. Rev. Cancer14(10), 683–691 (2014).
  • Li R , HeY, ZhangS, QinJ, WangJ. Cell membrane-based nanoparticles: a new biomimetic platform for tumor diagnosis and treatment. Acta Pharm. Sin. B8(1), 14–22 (2017).
  • Fan Z , LiPY, DengJ, BadySC, ChengH. Cell membrane coating for reducing nanoparticle-induced inflammatory responses to scaffold constructs. Nano Res.11(10), 5573–5583 (2018).
  • Tan S , WuT, ZhangD, ZhangZ. Cell or cell membrane-based drug delivery systems. Theranostics5(8), 863–881 (2015).
  • Song F , ChanWCW. Principles of conjugating quantum dots to proteins via carbodiimide chemistry. Nanotechnology22(49), 494006 (2011).
  • Werengowska Ciecwierz K , WisniewskiM, TerzykAP, FurmaniakS. The chemistry of bioconjugation in nanoparticles-based drug delivery system. Adv. Condens. Matter Phys.2015, 198175 (2015).
  • Liu YY , MiyoshiH, NakamuraM. Nanomedicine for drug delivery and imaging: a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. Int. J. Cancer120(12), 2527–2537 (2007).
  • Xu HK , ZhangYP, WanCet al. A bifunctional vinyl-sulfonium tethered peptide induced by thio-Michael-type addition reaction. Chin. Chem. Lett.33(4), 2001–2004 (2022).
  • Algar WR , PrasuhnDE, StewartMHet al. The controlled display of biomolecules on nanoparticles: a challenge suited to bioorthogonal chemistry. Bioconjug. Chem.22(5), 825–858 (2011).
  • Kolb HC , FinnMG, SharplessKB. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem Int. Ed.40(11), 2004–2021 (2001).
  • Hoyle CE , BowmanCN. Thiol-ene click chemistry. Angew. Chem. Int. Ed. Engl.49(9), 1540–1573 (2010).
  • Gregoritza M , BrandlFP. The Diels–Alder reaction: a powerful tool for the design of drug delivery systems and biomaterials. Eur. J. Pharm. Biopharm.97, 438–453 (2015).
  • Hein CD , LiuXM, WangD. Click chemistry, a powerful tool for pharmaceutical sciences. Pharm. Res.25(10), 2216–2230 (2008).
  • Yoon HY , LeeD, LimDK, KooH, KimK. Copper-free click chemistry: applications in drug delivery, cell tracking, and tissue engineering. Adv. Mater.34(10), 2107192 (2022).
  • Kim E , KooH. Biomedical applications of copper-free click chemistry: in vitro, in vivo, and ex vivo. Chem. Sci.10(34), 7835–7851 (2019).
  • Gao H , YangZ, ZhangSet al. Ligand modified nanoparticles increases cell uptake, alters endocytosis and elevates glioma distribution and internalization. Sci. Rep.3, 2534 (2013).
  • Gao H , PangZ, JiangX. Targeted delivery of nano-therapeutics for major disorders of the central nervous system. Pharm. Res.30(10), 2485–2498 (2013).
  • Gao H . Perspectives on dual targeting delivery systems for brain tumors. J. Neuroimmune Pharmacol.12(1), 6–16 (2017).
  • Talekar M , TrivediM, ShahPet al. Combination wt-p53 and microRNA-125b transfection in a genetically engineered lung cancer model using dual CD44/EGFR-targeting nanoparticles. Mol. Ther.24(4), 759–769 (2016).
  • Quail DF , JoyceJA. The microenvironmental landscape of brain tumors. Cancer Cell31(3), 326–341 (2017).
  • Gao H , XiongY, ZhangS, YangZ, CaoS, JiangX. RGD and interleukin-13 peptide functionalized nanoparticles for enhanced glioblastoma cells and neovasculature dual targeting delivery and elevated tumor penetration. Mol. Pharm.11(3), 1042–1052 (2014).
  • Dixit S , MillerK, ZhuYet al. Dual receptor-targeted theranostic nanoparticles for localized delivery and activation of photodynamic therapy drug in glioblastomas. Mol. Pharm.12(9), 3250–3260 (2015).
  • Xu C , SunY, YuY, HuM, YangC, ZhangZ. A sequentially responsive and structure-transformable nanoparticle with comprehensively improved ‘CAPIR cascade’ for enhanced antitumor effect. Nanoscale11(3), 1177–1194 (2018).
  • Chen WH , LuoGF, QiuWXet al. Programmed nanococktail for intracellular cascade reaction regulating self-synergistic tumor targeting therapy. Small12(6), 733–744 (2016).
  • Mendes M , SousaJJ, PaisA, VitorinoC. Targeted theranostic nanoparticles for brain tumor treatment. Pharmaceutics10(4), 181 (2018).
  • Zhang C , ZhengX, WanXet al. The potential use of H102 peptide-loaded dual-functional nanoparticles in the treatment of Alzheimer’s disease. J. Control. Rel.192, 317–324 (2014).
  • Kim KS , SuzukiK, ChoH, YounYS, BaeYH. Oral nanoparticles exhibit specific high-efficiency intestinal uptake and lymphatic transport. ACS Nano12(9), 8893–8900 (2018).
  • Loureiro JA , GomesB, FrickerGet al. Cellular uptake of PLGA nanoparticles targeted with anti-amyloid and anti-transferrin receptor antibodies for Alzheimer’s disease treatment. Colloids Surf. B Biointerfaces145, 8–13 (2016).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.