109
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Cd44 Targeted Delivery of Hyaluronic Acid-Coated Polymeric Nanoparticles Against Colorectal Cancer

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1613-1634 | Received 24 May 2023, Accepted 19 Sep 2023, Published online: 13 Oct 2023

References

  • Buccafusca G , ProserpioI, TralongoACet al. Early colorectal cancer: diagnosis, treatment and survivorship care. Crit. Rev. Oncol. Hematol.136, 20–30 (2019).
  • Teixido C , CastilloP, Martinez-VilaCet al. Molecular markers and targets in melanoma. Cells10(9), 2320 (2021).
  • Sarandria N . A literature review in immuno-oncology: pathophysiological and clinical features of colorectal cancer and the role of the doctor–patient interaction. J. Cancer Ther.13(12), 654–684 (2022).
  • Lewandowska A , ReligioniU, CzerwAet al. Nutritional treatment of patients with colorectal cancer. Int. J. Environ. Res. Public Health19(11), 6881 (2022).
  • Chavda J , BhattH. Systemic review on B-RafV600E mutation as potential therapeutic target for the treatment of cancer. Eur. J. Med. Chem.206, 112675 (2020).
  • Yosef H , FrickT, HammoudMet al. Exploring the efficacy and cellular uptake of sorafenib in colon cancer cells by Raman micro-spectroscopy. Analyst143(24), 6069–6078 (2018).
  • Ahiwale RJ , ChellampillaiB, PawarAP. Investigation of novel sorafenib tosylate loaded biomaterial based nano-cochleates dispersion system for treatment of hepatocellular carcinoma. J. Dispersion Sci. Technol.43(10), 1568–1586 (2022).
  • Pratt RL . Hyaluronan and the fascial frontier. Int. J. Mol. Sci.22(13), 6845 (2021).
  • Castaño-Amores C , Nieto-GómezP, Nieto-SánchezMT, Álvarez-SánchezR. Práctica clínica en prevención de migraña con anticuerpos monoclonales del péptido relacionado con el gen calcitonina: evidencias de casos reales. Ars Pharmaceutica63(4), 311–319 (2022).
  • Lee SY , KangMS, JeongWYet al. Hyaluronic acid-based theranostic nanomedicines for targeted cancer therapy. Cancers12(4), 940 (2020).
  • Settanni G , SchäferT, MuhlCet al. Poly-sarcosine and poly (ethylene-glycol) interactions with proteins investigated using molecular dynamics simulations. Comput. Struct. Biotechnol. J.16, 543–550 (2018).
  • Wu F , ZhouY, LiLet al. Computational approaches in preclinical studies on drug discovery and development. Front. Chem.8, 726 (2020).
  • Tiwari A , ModiSJ, GabheSY, KulkarniVM. Evaluation of piperine against cancer stem cells (CSCs) of hepatocellular carcinoma: Insights into epithelial-mesenchymal transition (EMT). Bioorg. Chem.110, 1–17 (2021).
  • Dhawan V , LokrasA, JoshiGet al. Polysaccharide and monosaccharide guided liver delivery of sorafenib tosylate –a nano-strategic approach and comparative assessment of hepatospecificity. Int. J. Pharm.625, 1–16 (2022).
  • Giammona G , DragoSE, CalabreseGet al. Galactosylated polymer/gold nanorods nanocomposites for sustained and pulsed chemo-photothermal treatments of hepatocarcinoma. Pharmaceutics14(11), 2503 (2022).
  • Bhattacharya S , AnjumMM, PatelKK. Gemcitabine cationic polymeric nanoparticles against ovarian cancer: formulation, characterization, and targeted drug delivery. Drug Deliv.29(1), 1060–1074 (2022).
  • Almoustafa HA , AlshawshMA, Al-SuedeFSRet al. The chemotherapeutic efficacy of hyaluronic acid coated polymeric nanoparticles against breast cancer metastasis in female NCr-Nu/Nu nude mice. Polymers15(2), 284 (2023).
  • Kale SA , ShaikhKS. Validated UV-vis spectrophotometric method for the estimation of sorafenib tosylate in bulk and nanoparticles. Int. J. Health Sci.6(Suppl. 3), 4011–4019 (2022).
  • Dahiya M , AwasthiR, DuaK, DurejaH. Sorafenib tosylate loaded superparamagnetic nanoparticles: development, optimization and cytotoxicity analysis on HepG2 human hepatocellular carcinoma cell line. J. Drug Deliv. Sci. Technol.79, 1–19 (2023).
  • Li N , ChenY, SunHet al. Decreasing acute toxicity and suppressing colorectal carcinoma using sorafenib-loaded nanoparticles. Pharm. Dev. Technol.25(5), 556–565 (2020).
  • Caputo TM , CusanoAM, PrincipeSet al. Sorafenib-loaded PLGA carriers for enhanced drug delivery and cellular uptake in liver cancer cells. Int. J. Nanomed.18, 4121–4142 (2023).
  • Shukla SK , KulkarniNS, FarralesPet al. Sorafenib loaded inhalable polymeric nanocarriers against non-small-cell lung cancer. Pharm. Res.37, 1–19 (2020).
  • Gao X , JiangP, ZhangQet al. Peglated-H1/pHGFK1 nanoparticles enhance anti-tumor effects of sorafenib by inhibition of drug-induced autophagy and stemness in renal cell carcinoma. J. Exp. Clin. Cancer Res.38(1), 1–15 (2019).
  • Wu H , WangC, SunJet al. Self-assembled and self-monitored sorafenib/indocyanine green nanodrug with synergistic antitumor activity mediated by hyperthermia and reactive oxygen species-induced apoptosis. ACS Appl. Mater. Interfaces11(47), 43996–44006 (2019).
  • Poojari R , SawantAV, KiniSet al. Antihepatoma activity of multifunctional polymeric nanoparticles via inhibition of microtubules and tyrosine kinases. Nanomedicine15(04), 381–396 (2020).
  • Varshosaz J , SadriF, RostamiMet al. Synthesis of pectin-deoxycholic acid conjugate for targeted delivery of anticancer drugs in hepatocellular carcinoma. Int. J. Biol. Macromol.139, 665–677 (2019).
  • Palomba F , GenoveseD, RampazzoEet al. PluS nanoparticles loaded with sorafenib: synthetic approach and their effects on endothelial cells. ACS Omega4(9), 13962–13971 (2019).
  • Sarwar U , NaeemM, NurjisFet al. Ultrasound-mediated in vivo biodistribution of coumarin-labeled sorafenib-loaded liposome-based nanotheranostic system. Nanomedicine17(25), 1909–1927 (2022).
  • Gopakumar L , SreeranganathanM, ChappanSet al. Enhanced oral bioavailability and antitumor therapeutic efficacy of sorafenib administered in core–shell protein nanoparticle. Drug Deliv. Transl. Res.12(11), 2824–2837 (2022).
  • Donthi MR , MunnangiSR, KrishnaKVet al. Formulating ternary inclusion complex of sorafenib tosylate using β-cyclodextrin and hydrophilic polymers: physicochemical characterization and in vitro assessment. AAPS PharmSciTech23(7), 254 (2022).
  • Xiao B , HanMK, ViennoisEet al. Hyaluronic acid-functionalized polymeric nanoparticles for colon cancer-targeted combination chemotherapy. Nanoscale7(42), 17745–17755 (2015).
  • Bertrand N , WuJ, XuXet al. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev.66, 2–25 (2014).
  • Babos G , BiróE, MeiczingerM, FeczkóT. Dual drug delivery of sorafenib and doxorubicin from PLGA and PEG-PLGA polymeric nanoparticles. Polymers10(8), 895 (2018).
  • Abdellatif AA , AliAT, BouazzaouiAet al. Formulation of polymeric nanoparticles loaded sorafenib; evaluation of cytotoxicity, molecular evaluation, and gene expression studies in lung and breast cancer cell lines. Nanotechnol. Rev.11(1), 987–1004 (2022).
  • Kalepu S , NekkantiV. Improved delivery of poorly soluble compounds using nanoparticle technology: a review. Drug Deliv. Transl. Res.6, 319–332 (2016).
  • Poojari R , KiniS, SrivastavaR, PandaD. Intracellular interactions of electrostatically mediated layer-by-layer assembled polyelectrolytes based sorafenib nanoparticles in oral cancer cells. Colloids Surf. B Biointerfaces143, 131–138 (2016).
  • Guan Q , GuoR, HuangSet al. Mesoporous polydopamine carrying sorafenib and SPIO nanoparticles for MRI-guided ferroptosis cancer therapy. J. Control. Rel.320, 392–403 (2020).
  • Hu B , SunD, SunCet al. A polymeric nanoparticle formulation of curcumin in combination with sorafenib synergistically inhibits tumor growth and metastasis in an orthotopic model of human hepatocellular carcinoma. Biochem. Biophys. Res. Commun.468(4), 525–532 (2015).
  • Bahman A , AbazaM-S, KhoushaishS, Al-AttiyahRJ. Therapeutic efficacy of sorafenib and plant-derived phytochemicals in human colorectal cancer cells. BMC Complement. Med. Ther.23(1), 1–24 (2023).
  • Chen Y , LiN, XuBet al. Polymer-based nanoparticles for chemo/gene-therapy: evaluation its therapeutic efficacy and toxicity against colorectal carcinoma. Biomed. Pharmacother.118, 1–19 (2019).
  • Lazzari S , MoscatelliD, CodariFet al. Colloidal stability of polymeric nanoparticles in biological fluids. J. Nanoparticle Res.14, 1–10 (2012).
  • Fanciullino R , CiccoliniJ, MilanoG. Challenges, expectations and limits for nanoparticles-based therapeutics in cancer: a focus on nano-albumin-bound drugs. Crit. Rev. Oncol. Hematol.88(3), 504–513 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.