220
Views
0
CrossRef citations to date
0
Altmetric
Review

Delivering Drugs to Tubular Cells and Organelles: The Application of Nanodrugs in Acute Kidney Injury

, , , , , & ORCID Icon show all
Pages 1477-1493 | Received 25 Jul 2023, Accepted 23 Aug 2023, Published online: 18 Sep 2023

References

  • Abebe A , KumelaK, BelayM, KebedeB, WobieY. Mortality and predictors of acute kidney injury in adults: a hospital-based prospective observational study. Sci. Rep.11(1), 15672 (2021).
  • Kellum JA , RomagnaniP, AshuntantangG, RoncoC, ZarbockA, AndersHJ. Acute kidney injury. Nat. Rev. Dis. Primers7(1), 52 (2021).
  • Ronco C , BellomoR, KellumJA. Acute kidney injury. Lancet394(10212), 1949–1964 (2019).
  • Hukriede NA , SorannoDE, SanderVet al. Experimental models of acute kidney injury for translational research. Nat. Rev. Nephrol.18(5), 277–293 (2022).
  • Kuwabara S , GogginsE, OkusaMD. The pathophysiology of sepsis-associated AKI. Clin. J. Am. Soc. Nephrol.17(7), 1050–1069 (2022).
  • Park SJ , LiC, ChenYM. Endoplasmic reticulum calcium homeostasis in kidney disease: pathogenesis and therapeutic targets. Am. J. Pathol.191(2), 256–265 (2021).
  • Lankadeva YR , MayCN, BellomoR, EvansRG. Role of perioperative hypotension in postoperative acute kidney injury: a narrative review. Br. J. Anaesth.128(6), 931–948 (2022).
  • Perazella MA , RosnerMH. Drug-induced acute kidney injury. Clin. J. Am. Soc. Nephrol.17(8), 1220–1233 (2022).
  • Liu BC , TangTT, LvLL, LanHY. Renal tubule injury: a driving force toward chronic kidney disease. Kidney Int.93(3), 568–579 (2018).
  • Li Z , LiuZ, LuoMet al. The pathological role of damaged organelles in renal tubular epithelial cells in the progression of acute kidney injury. Cell Death Discov.8(1), 239 (2022).
  • Jourde-Chiche N , FakhouriF, DouLet al. Endothelium structure and function in kidney health and disease. Nat. Rev. Nephrol.15(2), 87–108 (2019).
  • Molema G , ZijlstraJG, van MeursM, KampsJ. Renal microvascular endothelial cell responses in sepsis-induced acute kidney injury. Nat. Rev. Nephrol.18(2), 95–112 (2022).
  • Zhang K , LiR, ChenXet al. Renal endothelial cell-targeted extracellular vesicles protect the kidney from ischemic injury. Adv. Sci. (Weinh.)10(3), e2204626 (2023).
  • Wang S , WangY, LaiXet al. Minimalist nanocomplex with dual regulation of endothelial function and inflammation for targeted therapy of inflammatory vascular diseases. ACS Nano17(3), 2761–2781 (2023).
  • Oroojalian F , CharbgooF, HashemiMet al. Recent advances in nanotechnology-based drug delivery systems for the kidney. J. Control. Rel.321, 442–462 (2020).
  • Geo HN , MuruganDD, ChikZet al. Renal nano-drug delivery for acute kidney Injury: current status and future perspectives. J. Control. Rel.343, 237–254 (2022).
  • Kamaly N , HeJC, AusielloDA, FarokhzadOC. Nanomedicines for renal disease: current status and future applications. Nat. Rev. Nephrol.12(12), 738–753 (2016).
  • Kamada H , TsutsumiY, Sato-KamadaKet al. Synthesis of a poly(vinylpyrrolidone-co-dimethyl maleic anhydride) co-polymer and its application for renal drug targeting. Nat. Biotechnol.21(4), 399–404 (2003).
  • Wei H , JiangD, YuBet al. Nanostructured polyvinylpyrrolidone–curcumin conjugates allowed for kidney-targeted treatment of cisplatin induced acute kidney injury. Bioact. Mater.19, 282–291 (2023).
  • Zhu Z , LiuX, LiPet al. Renal clearable quantum dot–drug conjugates modulate labile iron species and scavenge free radicals for attenuating chemotherapeutic drug-induced acute kidney injury. ACS Appl. Mater. Interfaces15(18), 21854–21865 (2023).
  • Duan R , LiY, ZhangRet al. Reversing acute kidney injury through coordinated interplay of anti-inflammation and iron supplementation. Adv. Mater.35(28), e2301283 (2023).
  • Li Y , WangG, WangTet al. PEGylated gambogic acid nanoparticles enable efficient renal-targeted treatment of acute kidney injury. Nano Lett.23(12), 5641–5656 (2023).
  • Alidori S , AkhaveinN, ThorekDLet al. Targeted fibrillar nanocarbon RNAi treatment of acute kidney injury. Sci. Transl. Med.8(331), 331ra339 (2016).
  • Yan R , CuiW, MaW, LiJ, LiuZ, LinY. Typhaneoside–tetrahedral framework nucleic acids system: mitochondrial recovery and antioxidation for acute kidney injury treatment. ACS Nano17(9), 8767–8781 (2023).
  • Choi HS , MathewAP, UthamanSet al. Inflammation-sensing catalase-mimicking nanozymes alleviate acute kidney injury via reversing local oxidative stress. J. Nanobiotechnol.20(1), 205 (2022).
  • Wang S , ChenY, HanSet al. Selenium nanoparticles alleviate ischemia reperfusion injury-induced acute kidney injury by modulating GPx-1/NLRP3/Caspase-1 pathway. Theranostics12(8), 3882–3895 (2022).
  • Jiang D , GeZ, ImHJet al. DNA origami nanostructures can exhibit preferential renal uptake and alleviate acute kidney injury. Nat. Biomed. Eng.2(11), 865–877 (2018).
  • Williams RM , ShahJ, MercerEet al. Kidney-targeted redox scavenger therapy prevents cisplatin-induced acute kidney injury. Front. Pharmacol.12, 790913 (2021).
  • Han SJ , WilliamsRM, D’AgatiV, JaimesEA, HellerDA, LeeHT. Selective nanoparticle-mediated targeting of renal tubular Toll-like receptor 9 attenuates ischemic acute kidney injury. Kidney Int.98(1), 76–87 (2020).
  • Vallorz EL , JandaJ, MansourHM, SchnellmannRG. Kidney targeting of formoterol containing polymeric nanoparticles improves recovery from ischemia reperfusion-induced acute kidney injury in mice. Kidney Int.102(5), 1073–1089 (2022).
  • Deng X , ZengT, LiJet al. Kidney-targeted triptolide-encapsulated mesoscale nanoparticles for high-efficiency treatment of kidney injury. Biomater. Sci.7(12), 5312–5323 (2019).
  • Nurunnabi M , KhatunZ, HuhKMet al. In vivo biodistribution and toxicology of carboxylated graphene quantum dots. ACS Nano7(8), 6858–6867 (2013).
  • Wang H , YuD, FangJet al. Phenol-like group functionalized graphene quantum dots structurally mimicking natural antioxidants for highly efficient acute kidney injury treatment. Chem. Sci.11(47), 12721–12730 (2020).
  • Yu H , LinT, ChenWet al. Size and temporal-dependent efficacy of oltipraz-loaded PLGA nanoparticles for treatment of acute kidney injury and fibrosis. Biomaterials219, 119368 (2019).
  • Leeuwis JW , NguyenTQ, DendoovenA, KokRJ, GoldschmedingR. Targeting podocyte-associated diseases. Adv. Drug Deliv. Rev.62(14), 1325–1336 (2010).
  • Williams RM , ShahJ, NgBDet al. Mesoscale nanoparticles selectively target the renal proximal tubule epithelium. Nano Lett.15(4), 2358–2364 (2015).
  • Aird WC . Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. Circ. Res.100(2), 174–190 (2007).
  • Brenner BM , TroyJL, DaughartyTM. On the mechanism of inhibition in fluid reabsorption by the renal proximal tubule of the volume-expanded rat. J. Clin. Invest.50(8), 1596–1602 (1971).
  • Williams RM , ShahJ, TianHSet al. Selective nanoparticle targeting of the renal tubules. Hypertension71(1), 87–94 (2018).
  • Vallorz EL , Blohm-MangoneK, SchnellmannRG, MansourHM. Formoterol PLGA-PEG nanoparticles induce mitochondrial biogenesis in renal proximal tubules. AAPS J.23(4), 88 (2021).
  • Otsuka H , NagasakiY, KataokaK. PEGylated nanoparticles for biological and pharmaceutical applications. Adv. Drug Deliv. Rev.55(3), 403–419 (2003).
  • Zhang F , LiuMR, WanHT. Discussion about several potential drawbacks of PEGylated therapeutic proteins. Biol. Pharm. Bull.37(3), 335–339 (2014).
  • Christensen EI , BirnH, StormT, WeyerK, NielsenR. Endocytic receptors in the renal proximal tubule. Physiology27(4), 223–236 (2012).
  • Qin S , WuB, GongT, ZhangZR, FuY. Targeted delivery via albumin corona nanocomplex to renal tubules to alleviate acute kidney injury. J. Control. Rel.349, 401–412 (2022).
  • Pang M , DuanS, ZhaoMet al. Co-delivery of celastrol and lutein with pH sensitive nano micelles for treating acute kidney injury. Toxicol. Appl. Pharmacol.450, 116155 (2022).
  • Matsuura S , KatsumiH, SuzukiHet al. L-serine-modified polyamidoamine dendrimer as a highly potent renal targeting drug carrier. Proc. Natl Acad. Sci. USA115(41), 10511–10516 (2018).
  • Knight SF , KunduK, JosephGet al. Folate receptor-targeted antioxidant therapy ameliorates renal ischemia–reperfusion injury. J. Am. Soc. Nephrol.23(5), 793–800 (2012).
  • Huang C , ZengT, LiJet al. Folate receptor-mediated renal-targeting nanoplatform for the specific delivery of triptolide to treat renal ischemia/reperfusion injury. ACS Biomater. Sci. Eng.5(6), 2877–2886 (2019).
  • Du B , ZhaoM, WangYet al. Folic acid-targeted pluronic F127 micelles improve oxidative stress and inhibit fibrosis for increasing AKI efficacy. Eur. J. Pharmacol.930, 175131 (2022).
  • Hu JB , LiSJ, KangXQet al. CD44-targeted hyaluronic acid–curcumin prodrug protects renal tubular epithelial cell survival from oxidative stress damage. Carbohydr. Polym.193, 268–280 (2018).
  • Huang ZW , ShiY, ZhaiYYet al. Hyaluronic acid coated bilirubin nanoparticles attenuate ischemia reperfusion-induced acute kidney injury. J. Control. Rel.334, 275–289 (2021).
  • Walkon LL , Strubbe-RiveraJO, BazilJN. Calcium overload and mitochondrial metabolism. Biomolecules12(12), 1891 (2022).
  • Liu D , ShuG, JinFet al. ROS-responsive chitosan-SS31 prodrug for AKI therapy via rapid distribution in the kidney and long-term retention in the renal tubule. Sci. Adv.6(41), eabb7422 (2020).
  • Li J , DuanQ, WeiX, WuJ, YangQ. Kidney-targeted nanoparticles loaded with the natural antioxidant rosmarinic acid for acute kidney injury treatment. Small18(48), e2204388 (2022).
  • Tang TT , WangB, LiZLet al. KIM-1 targeted extracellular vesicles: a new therapeutic platform for RNAi to treat AKI. J. Am. Soc. Nephrol.32(10), 2467–2483 (2021).
  • Yan J , WangY, ZhangJ, LiuX, YuL, HeZ. Rapidly blocking the calcium overload/ROS production feedback loop to alleviate acute kidney injury via microenvironment-responsive BAPTA-AM/BAC co-delivery nanosystem. Small19(17), e2206936 (2023).
  • Huang Z , ChunC, LiX. Kidney targeting peptide-modified biomimetic nanoplatforms for treatment of acute kidney injury. J. Control. Rel.358, 368–381 (2023).
  • Liu Z , LiuX, YangQ, YuL, ChangY, QuM. Neutrophil membrane-enveloped nanoparticles for the amelioration of renal ischemia–reperfusion injury in mice. Acta Biomater.104, 158–166 (2020).
  • Tang TT , WangB, WuMet al. Extracellular vesicle-encapsulated IL-10 as novel nanotherapeutics against ischemic AKI. Sci. Adv.6(33), eaaz0748 (2020).
  • Gatti S , BrunoS, DeregibusMCet al. Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia–reperfusion-induced acute and chronic kidney injury. Nephrol. Dial. Transplant.26(5), 1474–1483 (2011).
  • Zhao M , LiuS, WangCet al. Mesenchymal stem cell-derived extracellular vesicles attenuate mitochondrial damage and inflammation by stabilizing mitochondrial DNA. ACS Nano15(1), 1519–1538 (2021).
  • Cao H , ChengY, GaoHet al. In vivo tracking of mesenchymal stem cell-derived extracellular vesicles improving mitochondrial function in renal ischemia–reperfusion injury. ACS Nano14(4), 4014–4026 (2020).
  • Yuan ZX , ZhangZR, ZhuDet al. Specific renal uptake of randomly 50% N-acetylated low molecular weight chitosan. Mol. Pharm.6(1), 305–314 (2009).
  • Wang DW , LiSJ, TanXYet al. Engineering of stepwise-targeting chitosan oligosaccharide conjugate for the treatment of acute kidney injury. Carbohydr. Polym.256, 117556 (2021).
  • Kaunitz JD , CumminsVP, MishlerD, NagamiGT. Inhibition of gentamicin uptake into cultured mouse proximal tubule epithelial cells by L-lysine. J. Clin. Pharmacol.33(1), 63–69 (1993).
  • Wischnjow A , SarkoD, JanzerMet al. Renal targeting: peptide-based drug delivery to proximal tubule cells. Bioconjug. Chem.27(4), 1050–1057 (2016).
  • Wang J , PoonC, ChinDet al. Design and in vivo characterization of kidney-targeting multimodal micelles for renal drug delivery. Nano Res.11(10), 5584–5595 (2018).
  • Schreiber A , TheiligF, SchwedaF, HocherlK. Acute endotoxemia in mice induces downregulation of megalin and cubilin in the kidney. Kidney Int.82(1), 53–59 (2012).
  • Wu X , TangS, DaiQet al. Vitamin D–vitamin D receptor alleviates oxidative stress in ischemic acute kidney injury via upregulating glutathione peroxidase 3. FASEB J.37(2), e22738 (2023).
  • Wang S , HuangS, LiuX, HeY, LiuY. Paricalcitol ameliorates acute kidney injury in mice by suppressing oxidative stress and inflammation via Nrf2/HO-1 signaling. Int. J. Mol. Sci.24(2), 969 (2023).
  • Du J , JiangS, HuZet al. Vitamin D receptor activation protects against lipopolysaccharide-induced acute kidney injury through suppression of tubular cell apoptosis. Am. J. Physiol. Renal Physiol.316(5), F1068–F1077 (2019).
  • Siegelman MH , DegrendeleHC, EstessP. Activation and interaction of CD44 and hyaluronan in immunological systems. J. Leukoc. Biol.66(2), 315–321 (1999).
  • Lewington AJ , PadanilamBJ, MartinDR, HammermanMR. Expression of CD44 in kidney after acute ischemic injury in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol.278(1), R247–254 (2000).
  • Fu Z , FanQ, ZhouY, ZhaoY, HeZ. Elimination of intracellular calcium overload by BAPTA-AM-loaded liposomes: a promising therapeutic agent for acute liver failure. ACS Appl. Mater. Interfaces11(43), 39574–39585 (2019).
  • Wang Y , PuM, YanJet al. 1,2-Bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid acetoxymethyl ester loaded reactive oxygen species responsive hyaluronic acid–bilirubin nanoparticles for acute kidney injury therapy via alleviating calcium overload mediated endoplasmic reticulum stress. ACS Nano17(1), 472–491 (2023).
  • Cichy J , PureE. The liberation of CD44. J. Cell Biol.161(5), 839–843 (2003).
  • Ichimura T , BonventreJV, BaillyVet al. Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J. Biol. Chem.273(7), 4135–4142 (1998).
  • Arai S , KitadaK, YamazakiTet al. Apoptosis inhibitor of macrophage protein enhances intraluminal debris clearance and ameliorates acute kidney injury in mice. Nat. Med.22(2), 183–193 (2016).
  • Han WK , BaillyV, AbichandaniR, ThadhaniR, BonventreJV. Kidney injury molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int.62(1), 237–244 (2002).
  • Ichimura T , AsseldonkEJPV, HumphreysBD, GunaratnamL, DuffieldJS, BonventreJV. Kidney injury molecule-1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells. J. Clin. Invest.118(5), 1657–1668 (2008).
  • Freeman GJ , CasasnovasJM, UmetsuDT, DekruyffRH. TIM genes: a family of cell surface phosphatidylserine receptors that regulate innate and adaptive immunity. Immunol. Rev.235, 172–189 (2010).
  • Kong L , FanD, ZhouL, WeiS. The influence of modified molecular (D/L-serine) chirality on the theragnostics of PAMAM-based nanomedicine for acute kidney injury. J. Mater. Chem. B9(43), 9023–9030 (2021).
  • Luk BT , ZhangL. Cell membrane-camouflaged nanoparticles for drug delivery. J. Control. Rel.220(Pt B), 600–607 (2015).
  • Chen L , HongW, RenW, XuT, QianZ, HeZ. Recent progress in targeted delivery vectors based on biomimetic nanoparticles. Signal Transduct. Target. Ther.6(1), 225 (2021).
  • Jin K , LuoZ, ZhangB, PangZ. Biomimetic nanoparticles for inflammation targeting. Acta Pharm. Sin. B8(1), 23–33 (2018).
  • Deng J , KohdaY, ChiaoHet al. Interleukin-10 inhibits ischemic and cisplatin-induced acute renal injury. Kidney Int.60(6), 2118–2128 (2001).
  • Ouyang W , O’GarraA. IL-10 family cytokines IL-10 and IL-22: from basic science to clinical translation. Immunity50(4), 871–891 (2019).
  • Karp JM , TeolGSL. Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell4(3), 206–216 (2009).
  • Bruno S , GrangeC, DeregibusMCet al. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J. Am. Soc. Nephrol.20(5), 1053–1067 (2009).
  • Cheng YQ , YueYX, CaoHMet al. Coassembly of hypoxia-sensitive macrocyclic amphiphiles and extracellular vesicles for targeted kidney injury imaging and therapy. J. Nanobiotechnol.19(1), 451 (2021).
  • Li Y , WangJ, WientjesMG, AuJL. Delivery of nanomedicines to extracellular and intracellular compartments of a solid tumor. Adv. Drug Deliv. Rev.64(1), 29–39 (2012).
  • Tang C , CaiJ, YinXM, WeinbergJM, VenkatachalamMA, DongZ. Mitochondrial quality control in kidney injury and repair. Nat. Rev. Nephrol.17(5), 299–318 (2021).
  • Liu Z , LiY, LiC, YuL, ChangY, QuM. Delivery of coenzyme Q10 with mitochondria-targeted nanocarrier attenuates renal ischemia–reperfusion injury in mice. Mater. Sci. Eng. C Mater. Biol. Appl.131, 112536 (2021).
  • Yu H , JinF, LiuDet al. ROS-responsive nano-drug delivery system combining mitochondria-targeting ceria nanoparticles with atorvastatin for acute kidney injury. Theranostics10(5), 2342–2357 (2020).
  • Qin S , LiuC, ChenYet al. Cobaltosic oxide–polyethylene glycol–triphenylphosphine nanoparticles ameliorate the acute-to-chronic kidney disease transition by inducing BNIP3-mediated mitophagy. Kidney Int.103(5), 903–916 (2023).
  • Liu D , JinF, ShuGet al. Enhanced efficiency of mitochondria-targeted peptide SS-31 for acute kidney injury by pH-responsive and AKI-kidney targeted nanopolyplexes. Biomaterials211, 57–67 (2019).
  • Huang Q , YangY, ZhaoTet al. Passively-targeted mitochondrial tungsten-based nanodots for efficient acute kidney injury treatment. Bioact. Mater.21, 381–393 (2023).
  • Smith RA , PorteousCM, CoulterCV, MurphyMP. Selective targeting of an antioxidant to mitochondria. Eur. J. Biochem.263(3), 709–716 (1999).
  • Murphy MP , SmithRA. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Ann. Rev. Pharmacol. Toxicol.47, 629–656 (2007).
  • Reily C , MitchellT, ChackoBK, BenavidesGA, MurphyMP, Darley-UsmarVM. Mitochondrially targeted compounds and their impact on cellular bioenergetics. Redox Biol.1(1), 86–93 (2013).
  • Battogtokh G , ChoiYS, KangDSet al. Mitochondria-targeting drug conjugates for cytotoxic, anti-oxidizing and sensing purposes: current strategies and future perspectives. Acta Pharm. Sin. B8(6), 862–880 (2018).
  • Zhao K , ZhaoGM, WuDet al. Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. J. Biol. Chem.279(33), 34682–34690 (2004).
  • Birk AV , LiuS, SoongYet al. The mitochondrial-targeted compound SS-31 re-energizes ischemic mitochondria by interacting with cardiolipin. J. Am. Soc. Nephrol.24(8), 1250–1261 (2013).
  • Szeto HH . First-in-class cardiolipin-protective compound as a therapeutic agent to restore mitochondrial bioenergetics. Br. J. Pharmacol.171(8), 2029–2050 (2014).
  • Kumar S . Cellular and molecular pathways of renal repair after acute kidney injury. Kidney Int.93(1), 27–40 (2018).
  • Ruggiero A , VillaCH, BanderEet al. Paradoxical glomerular filtration of carbon nanotubes. Proc. Natl Acad. Sci. USA107(27), 12369–12374 (2010).
  • Ma X , GongN, ZhongL, SunJ, LiangXJ. Future of nanotherapeutics: targeting the cellular sub-organelles. Biomaterials97, 10–21 (2016).
  • Ledford H . ‘Astonishing’ molecular syringe ferries proteins into human cells. Nature616(7955), 18–19 (2023).
  • Kreitz J , FriedrichMJ, GuruAet al. Programmable protein delivery with a bacterial contractile injection system. Nature616(7956), 357–364 (2023).
  • Hulse M , RosnerMH. Drugs in development for acute kidney injury. Drugs79(8), 811–821 (2019).
  • Fouad AA , Al-MulhimAS, JresatI. Cannabidiol treatment ameliorates ischemia/reperfusion renal injury in rats. Life Sci.91(7–8), 284–292 (2012).
  • Kanlaya R , ThongboonkerdV. Protective effects of epigallocatechin-3-gallate from green tea in various kidney diseases. Adv. Nutr.10(1), 112–121 (2019).
  • Li HD , MengXM, HuangC, ZhangL, LvXW, LiJ. Application of herbal traditional Chinese medicine in the treatment of acute kidney injury. Front. Pharmacol.10, 376 (2019).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.