933
Views
0
CrossRef citations to date
0
Altmetric
Review

Virus-like particles derived from bacteriophage MS2 as antigen scaffolds and RNA protective shells

ORCID Icon & ORCID Icon
Pages 1103-1115 | Received 20 Dec 2023, Accepted 06 Mar 2024, Published online: 17 Apr 2024

References

  • Foglizzo V, Marchio S. Bacteriophages as therapeutic and diagnostic vehicles in cancer. Pharmaceuticals (Basel) 14(2), 161 (2021).
  • Karimi M, Mirshekari H, Moosavi Basri SM, Bahrami S, Moghoofei M, Hamblin MR. Bacteriophages and phage-inspired nanocarriers for targeted delivery of therapeutic cargos. Adv. Drug Deliv. Rev. 106(Pt A), 45–62 (2016).
  • van Kan-Davelaar HE, van Hest JC, Cornelissen JJ, Koay MS. Using viruses as nanomedicines. Br. J. Pharmacol. 171(17), 4001–4009 (2014).
  • Peabody DS, Lim F. Complementation of RNA binding site mutations in MS2 coat protein heterodimers. Nucleic Acids Res. 24(12), 2352–2359 (1996).
  • Golmohammadi R, Valegår K, Fridborg K, LiljasL. The refined structure of bacteriophage MS2 at 2· 8 Å resolution. J. Mol. Biol. 234(3), 620–639 (1993).
  • Biela AP, Naskalska A, Fatehi F, Twarock R, Heddle JG. Programmable polymorphism of a virus-like particle. Commun. Mater. 3, 7 (2022).
  • Peabody DS. Translational repression by bacteriophage MS2 coat protein expressed from a plasmid. A system for genetic analysis of a protein–RNA interaction. J. Biol. Chem. 265(10), 5684–5689 (1990).
  • Pickett GG, Peabody DS. Encapsidation of heterologous RNAs by bacteriophage MS2 coat protein. Nucleic Acids Res. 21(19), 4621–4626 (1993).
  • Peabody DS. The RNA binding site of bacteriophage MS2 coat protein. EMBO J. 12(2), 595–600 (1993).
  • Ni CZ, Syed R, Kodandapani R, Wickersham J, Peabody DS, Ely KR. Crystal structure of the MS2 coat protein dimer: implications for RNA binding and virus assembly. Structure 3(3), 255–263 (1995).
  • Peabody DS. Role of the coat protein–RNA interaction in the life cycle of bacteriophage MS2. Mol. Gen. Genet. 254(4), 358–364 (1997).
  • Peabody DS. Subunit fusion confers tolerance to peptide insertions in a virus coat protein. Arch. Biochem. Biophys. 347(1), 85–92 (1997).
  • Talbot SJ, Goodman S, Bates SR, Fishwick CW, Stockley PG. Use of synthetic oligoribonucleotides to probe RNA–protein interactions in the MS2 translational operator complex. Nucleic Acids Res. 18(12), 3521–3528 (1990).
  • Goodman ST, Talbot SJ, Haneef I, Tewary HK, Fishwick CW, Stockley PG. Synthetic RNA in the study of RNA–protein interactions of MS2 bacteriophage. Nucleic Acids Symp. Ser. (24), 293 (1991).
  • Mastico RA, Talbot SJ, Stockley PG. Multiple presentation of foreign peptides on the surface of an RNA-free spherical bacteriophage capsid. J. Gen. Virol. 74(Pt 4), 541–548 (1993).
  • Valegård K, Murray JB, Stockley PG, Stonehouse NJ, Liljas L. Crystal structure of an RNA bacteriophage coat protein–operator complex. Nature 371(6498), 623–626 (1994).
  • Stockley PG, Stonehouse NJ, Murray JB et al. Probing sequence-specific RNA recognition by the bacteriophage MS2 coat protein. Nucleic Acids Res. 23(13), 2512–2518 (1995).
  • Stonehouse NJ, Scott DJ, Fonseca S et al. Molecular interactions in the RNA bacteriophage MS2. Biochem. Soc. Trans. 24(3), S412 (1996).
  • Stonehouse NJ, Valegård K, Golmohammadi R et al. Crystal structures of MS2 capsids with mutations in the subunit FG loop. J. Mol. Biol. 256(2), 330–339 (1996).
  • Mohsen MO, Zha L, Cabral-Miranda G, Bachmann MF. Major findings and recent advances in virus-like particle (VLP)-based vaccines. Semin. Immunol. 34, 123–132 (2017).
  • Bachmann MF, Jennings GT. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat. Rev. Immunol. 10(11), 787–796 (2010).
  • Cohen AA, van Doremalen N, Greaney AJ et al. Mosaic RBD nanoparticles protect against challenge by diverse sarbecoviruses in animal models. Science 377(6606), eabq0839 (2022).
  • Zhang X, Wu S, Liu J et al. A mosaic nanoparticle vaccine elicits potent mucosal immune response with significant cross-protection activity against multiple SARS-CoV-2 sublineages. Adv. Sci. (Weinh.) 10(27), e2301034 (2023).
  • Valegård K, Liljas L, Fridborg K, Unge T. The three-dimensional structure of the bacterial virus MS2. Nature 345(6270), 36–41 (1990).
  • Heal KG, Hill HR, Stockley PG, Hollingdale MR, Taylor-Robinson AW. Expression and immunogenicity of a liver stage malaria epitope presented as a foreign peptide on the surface of RNA-free MS2 bacteriophage capsids. Vaccine 18(3–4), 251–258 (1999).
  • El-Moamly AA, El-Sweify MA. Malaria vaccines: the 60-year journey of hope and final success – lessons learned and future prospects. Trop. Med. Health 51(1), 29 (2023).
  • Peabody DS, Manifold-Wheeler B, Medford A, Jordan SK, do Carmo Caldeira J, Chackerian B. Immunogenic display of diverse peptides on virus-like particles of RNA phage MS2. J. Mol. Biol. 380(1), 252–263 (2008).
  • CDC. www.cdc.gov/std/HPV/STDFact-HPV.htm
  • Tumban E, Peabody J, Tyler M, Peabody DS, Chackerian B. VLPs displaying a single L2 epitope induce broadly cross-neutralizing antibodies against human papillomavirus. PLOS ONE 7(11), e49751 (2012).
  • Zhai L, Peabody J, Pang YS, Schiller J, Chackerian B, Tumban E. A novel candidate HPV vaccine: MS2 phage VLP displaying a tandem HPV L2 peptide offers similar protection in mice to Gardasil-9. Antiviral Res. 147, 116–123 (2017).
  • Tyler M, Tumban E, Dziduszko A, Ozbun MA, Peabody DS, Chackerian B. Immunization with a consensus epitope from human papillomavirus L2 induces antibodies that are broadly neutralizing. Vaccine 32(34), 4267–4274 (2014).
  • Tumban E, Peabody J, Peabody DS, Chackerian B. A universal virus-like particle-based vaccine for human papillomavirus: longevity of protection and role of endogenous and exogenous adjuvants. Vaccine 31(41), 4647–4654 (2013).
  • Yadav R, Zhai L, Tumban E. Virus-like particle-based L2 vaccines against HPVs: where are we today? Viruses 12(1), 18 (2019).
  • Zhai L, Yadav R, Kunda NK et al. Oral immunization with bacteriophage MS2-L2 VLPs protects against oral and genital infection with multiple HPV types associated with head and neck cancers and cervical cancer. Antiviral Res. 166, 56–65 (2019).
  • Hunter Z, Tumban E, Dziduszko A, Chackerian B. Aerosol delivery of virus-like particles to the genital tract induces local and systemic antibody responses. Vaccine 29(28), 4584–4592 (2011).
  • Dong YM, Zhang GG, Huang XJ, Chen L, Chen HT. Promising MS2 mediated virus-like particle vaccine against foot-and-mouth disease. Antiviral Res. 117, 39–43 (2015).
  • Wang G, Liu Y, Feng H et al. Immunogenicity evaluation of MS2 phage-mediated chimeric nanoparticle displaying an immunodominant B cell epitope of foot-and-mouth disease virus. PeerJ 6, e4823 (2018).
  • Basu R, Zhai L, Contreras A, Tumban E. Immunization with phage virus-like particles displaying Zika virus potential B-cell epitopes neutralizes Zika virus infection of monkey kidney cells. Vaccine 36(10), 1256–1264 (2018).
  • Mogus AT, Liu L, Jia M et al. Virus-like particle based vaccines elicit neutralizing antibodies against the HIV-1 fusion peptide. Vaccines (Basel) 8(4), 765 (2020).
  • Chiba S, Frey SJ, Halfmann PJ et al. Multivalent nanoparticle-based vaccines protect hamsters against SARS-CoV-2 after a single immunization. Commun. Biol. 4(1), 597 (2021).
  • Collar AL, Linville AC, Core SB, Frietze KM. Epitope-based vaccines against the Chlamydia trachomatis major outer membrane protein variable domain 4 elicit protection in mice. Vaccines (Basel) 10(6), 875 (2022).
  • Ord RL, Caldeira JC, Rodriguez M et al. A malaria vaccine candidate based on an epitope of the Plasmodium falciparum RH5 protein. Malar. J. 13, 326 (2014).
  • Crossey E, Frietze K, Narum DL, Peabody DS, Chackerian B. Identification of an immunogenic mimic of a conserved epitope on the Plasmodium falciparum blood stage antigen AMA1 using virus-like particle (VLP) peptide display. PLOS ONE 10(7), e0132560 (2015).
  • Frietze KM, Pascale JM, Moreno B, Chackerian B, Peabody DS. Pathogen-specific deep sequence-coupled biopanning: a method for surveying human antibody responses. PLOS ONE 12(2), e0171511 (2017).
  • Shiba T, Suzuki Y. Localization of A protein in the RNA–A protein complex of RNA phage MS2. Biochim. Biophys. Acta 654(2), 249–255 (1981).
  • Pasloske BL, Walkerpeach CR, Obermoeller RD, Winkler M, DuBois DB. Armored RNA technology for production of ribonuclease-resistant viral RNA controls and standards. J. Clin. Microbiol. 36(12), 3590–3594 (1998).
  • DuBois DB, Winkler MM, Pasloske BL. Ribonuclease Resistant Viral RNA Standards. Cenetron Diagnostics LLC Applied Biosystems LLC Asuragen Inc. US5677124A (1997).
  • Rolfe KJ, Parmar S, Mururi D et al. An internally controlled, one-step, real-time RT-PCR assay for norovirus detection and genogrouping. J. Clin. Virol. 39(4), 318–321 (2007).
  • Ninove L, Nougairede A, Gazin C et al. RNA and DNA bacteriophages as molecular diagnosis controls in clinical virology: a comprehensive study of more than 45,000 routine PCR tests. PLOS ONE 6(2), e16142 (2011).
  • Beld M, Minnaar R, Weel J et al. Highly sensitive assay for detection of enterovirus in clinical specimens by reverse transcription-PCR with an armored RNA internal control. J. Clin. Microbiol. 42(7), 3059–3064 (2004).
  • Meng S, Li J. A novel duplex real-time reverse transcriptase-polymerase chain reaction assay for the detection of hepatitis C viral RNA with armored RNA as internal control. Virol. J. 7, 117 (2010).
  • Cheng Y, Niu J, Zhang Y, Huang J, Li Q. Preparation of His-tagged armored RNA phage particles as a control for real-time reverse transcription-PCR detection of severe acute respiratory syndrome coronavirus. J. Clin. Microbiol. 44(10), 3557–3561 (2006).
  • Wei Y, Yang C, Wei B et al. RNase-resistant virus-like particles containing long chimeric RNA sequences produced by two-plasmid coexpression system. J. Clin. Microbiol. 46(5), 1734–1740 (2008).
  • Lowary PT, Uhlenbeck OC. An RNA mutation that increases the affinity of an RNA–protein interaction. Nucleic Acids Res. 15(24), 10483–10493 (1987).
  • Wei B, Wei Y, Zhang K et al. Construction of armored RNA containing long-size chimeric RNA by increasing the number and affinity of the pac site in exogenous RNA and sequence coding coat protein of the MS2 bacteriophage. Intervirology 51(2), 144–150 (2008).
  • Zhan S, Li J, Xu R, Wang L, Zhang K, Zhang R. Armored long RNA controls or standards for branched DNA assay for detection of human immunodeficiency virus type 1. J. Clin. Microbiol. 47(8), 2571–2576 (2009).
  • Zhang D, Sun Y, Jia T et al. External quality assessment for the detection of measles virus by reverse transcription-PCR using armored RNA. PLOS ONE 10(8), e0134681 (2015).
  • Zhang L, Hao M, Zhang K et al. External quality assessment for the molecular detection of MERS-CoV in China. J. Clin. Virol. 75, 5–9 (2016).
  • Wang Z, Chen Y, Yang J et al. External quality assessment for molecular detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in clinical laboratories. J. Mol. Diagn. 23(1), 19–28 (2021).
  • Felder E, Wölfel R. Development of a versatile and stable internal control system for RT-qPCR assays. J. Virol. Methods 208, 33–40 (2014).
  • Mikel P, Vasickova P, Tesarik R et al. Preparation of MS2 phage-like particles and their use as potential process control viruses for detection and quantification of enteric RNA viruses in different matrices. Front. Microbiol. 7, 1911 (2016).
  • Zambenedetti MR, Pavoni DP, Dallabona AC et al. Internal control for real-time polymerase chain reaction based on MS2 bacteriophage for RNA viruses diagnostics. Mem. Inst. Oswaldo Cruz 112(5), 339–347 (2017).
  • Dedkov VG, Magassouba N, Safonova MV et al. Development and evaluation of a one-step quantitative RT-PCR assay for detection of Lassa virus. J. Virol. Methods 271, 113674 (2019).
  • Wei B, Wei Y, Zhang K et al. Development of an antisense RNA delivery system using conjugates of the MS2 bacteriophage capsids and HIV-1 TAT cell-penetrating peptide. Biomed. Pharmacother. 63(4), 313–318 (2009).
  • Pan Y, Zhang Y, Jia T, Zhang K, Li J, Wang L. Development of a microRNA delivery system based on bacteriophage MS2 virus-like particles. FEBS J. 279(7), 1198–1208 (2012).
  • Yao Y, Jia T, Pan Y et al. Using a novel microRNA delivery system to inhibit osteoclastogenesis. Int. J. Mol. Sci. 16(4), 8337–8350 (2015).
  • Wang G, Jia T, Xu X et al. Novel miR-122 delivery system based on MS2 virus like particle surface displaying cell-penetrating peptide TAT for hepatocellular carcinoma. Oncotarget 7(37), 59402–59416 (2016).
  • Zhang J, Li D, Zhang R, Peng R, Li J. Delivery of microRNA-21-sponge and pre-microRNA-122 by MS2 virus-like particles to therapeutically target hepatocellular carcinoma cells. Exp. Biol. Med. (Maywood) 246(23), 2463–2472 (2021).
  • Mikel P, Vasickova P, Kralik P. One-plasmid double-expression His-tag system for rapid production and easy purification of MS2 phage-like particles. Sci. Rep. 7(1), 17501 (2017).
  • Ashley CE, Carnes EC, Phillips GK et al. Cell-specific delivery of diverse cargos by bacteriophage MS2 virus-like particles. ACS Nano 5(7), 5729–5745 (2011).
  • Legendre D, Fastrez J. Production in Saccharomyces cerevisiae of MS2 virus-like particles packaging functional heterologous mRNAs. J. Biotechnol. 117(2), 183–194 (2005).
  • Sun S, Li W, Sun Y, Pan Y, Li J. A new RNA vaccine platform based on MS2 virus-like particles produced in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 407(1), 124–128 (2011).
  • Baron Y, Sens J, Lange L et al. Improved alpharetrovirus-based Gag.MS2 particles for efficient and transient delivery of CRISPR-Cas9 into target cells. Mol. Ther. Nucleic Acids 27, 810–823 (2022).
  • Pan Y, Jia T, Zhang Y et al. MS2 VLP-based delivery of microRNA-146a inhibits autoantibody production in lupus-prone mice. Int. J. Nanomed. 7, 5957–5967 (2012).
  • Li J, Sun Y, Jia T, Zhang R, Zhang K, Wang L. Messenger RNA vaccine based on recombinant MS2 virus-like particles against prostate cancer. Int. J. Cancer 134(7), 1683–1694 (2014).
  • Aanei IL, Francis MB. Dual surface modification of genome-free MS2 capsids for delivery applications. Methods Mol. Biol. 1776, 629–642 (2018).
  • Aanei IL, Glasgow JE, Capehart SL, Francis MB. Encapsulation of negatively charged cargo in MS2 viral capsids. Methods Mol. Biol. 1776, 303–317 (2018).
  • Wu M, Sherwin T, Brown WL, Stockley PG. Delivery of antisense oligonucleotides to leukemia cells by RNA bacteriophage capsids. Nanomedicine 1(1), 67–76 (2005).
  • Dictenberg J. Genetic encoding of fluorescent RNA ensures a bright future for visualizing nucleic acid dynamics. Trends Biotechnol. 30(120), 621–626 (2012).
  • Lam P, Steinmetz NF. Plant viral and bacteriophage delivery of nucleic acid therapeutics. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 10(1), e1487 (2018).
  • Leman JK, Weitzner BD, Lewis SM et al. Macromolecular modeling and design in Rosetta: recent methods and frameworks. Nat. Methods 2020;17:665–680.
  • Dauparas J, Anishchenko I, Bennett N et al. Robust deep learning-based protein sequence design using Protein MPNN. Science 378(6615), 49–56 (2022).
  • Jumper J, Evans R, Pritzel A et al. Highly accurate protein structure prediction with AlphaFold. Nature 596(7873), 583–589 (2021).
  • Watson JL, Juergens D, Bennett NR et al. De novo design of protein structure and function with RF diffusion. Nature 620(7976), 1089–1100 (2023).