58
Views
0
CrossRef citations to date
0
Altmetric
Commentary

Piezoelectric nanomaterials: latest applications in biomedicine and challenges in clinical translation

ORCID Icon, & ORCID Icon
Pages 1029-1034 | Received 11 Mar 2024, Accepted 11 Mar 2024, Published online: 04 Apr 2024

References

  • Wang X, Shi J. Piezoelectric nanogenerators for self-powered nanodevices. In: Piezoelectric Nanomaterials for Biomedical Applications. Ciofani G, Menciassi A (Eds.), Springer-Verlag Berlin, Heidelberg, Germany, 135–172 (2012).
  • Cafarelli A, Marino A, Vannozzi L et al. Piezoelectric nanomaterials activated by ultrasound: the pathway from discovery to future clinical adoption. ACS Nano 15(7), 11066–11086 (2021).
  • Kapat K, Shubhra QTH, Zhou M, Leeuwenburgh S. Piezoelectric nano-biomaterials for biomedicine and tissue regeneration. Adv. Funct. Mater. 30(44), 1909045 (2020).
  • Sezer N, Koç M. A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano Energy 80, 105567 (2021).
  • Tang Y, Wu C, Wu Z, Hu L, Zhang W, Zhao K. Fabrication and in vitro biological properties of piezoelectric bioceramics for bone regeneration. Sci. Rep. 7(1), 1–12 (2017).
  • Bera S, Mondal S, Xue B, Shimon LJW, Cao Y, Gazit E. Rigid helical-like assemblies from a self-aggregating tripeptide. Nat. Mater. 18(5), 503–509 (2019).
  • Kholkin A, Amdursky N, Bdikin I, Gazit E, Rosenman G. Strong piezoelectricity in bioinspired peptide nanotubes. ACS Nano 4(2), 610–614 (2010).
  • Wang X, Song J, Liu J, Zhong LW. Direct-current nanogenerator driven by ultrasonic waves. Science 316(5821), 102–105 (2007).
  • Ciofani G, Danti S, D'Alessandro D et al. Enhancement of neurite outgrowth in neuronal-like cells following boron nitride nanotube-mediated stimulation. ACS Nano 4(10), 6267–6277 (2010).
  • Marino A, Arai S, Hou Y et al. Piezoelectric nanoparticle-assisted wireless neuronal stimulation. ACS Nano 9(7), 7678–7689 (2015).
  • Rojas C, Tedesco M, Massobrio P et al. Acoustic stimulation can induce a selective neural network response mediated by piezoelectric nanoparticles. J. Neural Eng. 15(3), 036016 (2018).
  • Genchi GG, Ceseracciu L, Marino A et al. P(VDF-TrFE)/BaTiO3 nanoparticle composite films mediate piezoelectric stimulation and promote differentiation of SH-SY5Y neuroblastoma cells. Adv. Healthc. Mater. 5(14), 1808–1820 (2016).
  • Liu L, Chen B, Liu K et al. Wireless manipulation of magnetic/piezoelectric micromotors for precise neural stem-like cell stimulation. Adv. Funct. Mater. 30(11), 1910108 (2020).
  • Kim T, Kim HJ, Choi W et al. Deep brain stimulation by blood–brain-barrier-crossing piezoelectric nanoparticles generating current and nitric oxide under focused ultrasound. Nat. Biomed. Eng. 7(2), 149–163 (2022).
  • Marino A, Genchi GG, Mattoli V, Ciofani G. Piezoelectric nanotransducers: the future of neural stimulation. Nano Today 14, 9–12 (2017).
  • Zhao D, Feng P-J, Liu J-H et al. Electromagnetized-nanoparticle-modulated neural plasticity and recovery of degenerative dopaminergic neurons in the mid-brain. Adv. Mater. 32(43), 2003800 (2020).
  • Ricotti L, Cafarelli A, Manferdini C et al. Ultrasound stimulation of piezoelectric nanocomposite hydrogels boosts chondrogenic differentiation in vitro, in both a normal and inflammatory milieu. ACS Nano 18(3), 2047–2065 (2024).
  • Zhao F, Zhang C, Liu J et al. Periosteum structure/function-mimicking bioactive scaffolds with piezoelectric/chem/nano signals for critical-sized bone regeneration. Chem. Eng. J. 402, 126203 (2020).
  • Kaliannagounder VK, Raj NPMJ, Unnithan AR et al. Remotely controlled self-powering electrical stimulators for osteogenic differentiation using bone inspired bioactive piezoelectric whitlockite nanoparticles. Nano Energy 85, 105901 (2021).
  • Marino A, Battaglini M, De Pasquale D, Degl'Innocenti A, Ciofani G. Ultrasound-activated piezoelectric nanoparticles inhibit proliferation of breast cancer cells. Sci. Rep. 8(1), 6257 (2018).
  • Marino A, Almici E, Migliorin S et al. Piezoelectric barium titanate nanostimulators for the treatment of glioblastoma multiforme. J. Colloid Interf. Sci. 538, 449–461 (2019).
  • Pucci C, Marino A, Şen Ö et al. Ultrasound-responsive nutlin-loaded nanoparticles for combined chemotherapy and piezoelectric treatment of glioblastoma cells. Acta Biomater. 139, 218–236 (2022).
  • Şen Ö, Marino A, Pucci C, Ciofani G. Modulation of anti-angiogenic activity using ultrasound-activated nutlin-loaded piezoelectric nanovectors. Mater. Today Bio. 13, 100196 (2022).
  • Li C, Xiao C, Zhan L et al. Wireless electrical stimulation at the nanoscale interface induces tumor vascular normalization. Bioact. Mater. 18, 399–408 (2022).
  • Wu M, Zhang Z, Liu Z et al. Piezoelectric nanocomposites for sonodynamic bacterial elimination and wound healing. Nano Today 37, 101104 (2021).
  • Zhao H, Xue S, Hussherr MD, Teixeira AP, Fussenegger M. Autonomous push button-controlled rapid insulin release from a piezoelectrically activated subcutaneous cell implant. Sci. Adv. 8(24), 4389 (2022).
  • Chen Y, Shi J, Yang G et al. High-performance sono-piezoelectric nanocomposites enhanced by interfacial coupling effects for implantable nanogenerators and actuators. Mater. Horizons 11(4), 995–1007 (2024).
  • Dani SS, Tripathy A, Alluri NR, Balasubramaniam S, Ramadoss A. A critical review: the impact of electrical poling on the longitudinal piezoelectric strain coefficient. Mater. Adv. 3(24), 8886–8921 (2022).
  • Yu S, Milam-Guerrero JA, Tai Y et al. Maximizing polyacrylonitrile nanofiber piezoelectric properties through the optimization of electrospinning and post-thermal treatment processes. ACS Appl. Polym. Mater. 4(1), 635–644 (2022).
  • Han M, Yildiz E, Bozuyuk U et al. Janus microparticles-based targeted and spatially-controlled piezoelectric neural stimulation via low-intensity focused ultrasound. Nat. Commun. 15(1), 1–17 (2024).
  • Truong Hoang Q, Kim DY, Park HS et al. Oxygen-supplying piezocatalytic therapy of hypoxic tumors by intratumoral delivery of pH-responsive multicompartmental carriers with sequential drug release capability. Adv. Funct. Mater. 2306078 (2024).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.