681
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Gold Nanorod-Mediated Photothermolysis Induces Apoptosis of Macrophages Via Damage of Mitochondria

&
Pages 265-276 | Published online: 30 Mar 2009

Bibliography

  • Libby P : Inflammation in atherosclerosis.Nature420, 868–874 (2002).
  • Kinne RW , BrauerR, StuhlmullerB, Palombo-KinneE, BurmesterGR: Macrophages in rheumatoid arthritis.Arthritis Res.2, 189–202 (2000).
  • Zissel G , PrasseA, Muller-QuernheimJ: Sarcoidosis-immunopathogenetic concepts.Semin. Respir. Crit. Care Med.28, 3–14 (2007).
  • Gordon S : Alternative activation of macrophages.Nat. Rev. Immunol.3, 23–35 (2003).
  • Li AC , GlassCK: The macrophage foam cell as a target for therapeutic intervention.Nat. Med.8, 1235–1242 (2002).
  • Moghimi SM , HunterAC, MurrayJC: Nanomedicine: current status and future prospects.FASEB J.19, 311–330 (2005).
  • Moghimi SM , BonnemainB: Subcutaneous and intravenous delivery of diagnostic agents to the lymphatic system: applications in lymphoscintigraphy and indirect lymphography.Adv. Drug Deliv. Rev.37, 295–312 (1999).
  • Agrawal AK , GuptaCM: Tuftsin-bearing liposomes in treatment of macrophage-based infections.Adv. Drug Deliv. Rev.41, 135–146 (2000).
  • Gabizon AA , ShmeedaH, ZalipskyS: Pros and cons of the liposome platform in cancer drug targeting.J. Liposome Res.16, 175–183 (2006).
  • Pitsillides CM , JoeEK, WeiX, AndersonRR, LinCP: Selective cell targeting with light-absorbing microparticles and nanoparticles.Biophys. J.84, 4023–4032 (2003).
  • O‘Neal DP , HirschLR, HalasNJ, PayneJD, WestJL: Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles.Cancer Lett.209, 171–176 (2004).
  • Zharov VP , LetfullinRR, GalitovskayaEN: Microbubbles-overlapping mode for laser killing of cancer cells with absorbing nanoparticle clusters.J. Phys. D38, 2571–2581 (2005).
  • El-Sayed IH , HuangX, El-SayedMA: Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanorparticles.Cancer Lett.239, 125–139 (2005).
  • Hirsch LR , StaffordRJ, BanksonJAet al.: Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance.Proc. Natl Acad. Sci. USA100, 13549–13554 (2003).
  • Loo C , LoweryA, WestJ, HalasN, DrezekR: Immunotargeted nanoshells for integrated cancer imaging and therapy.Nano Lett.5, 709–711 (2005).
  • Au L , ZhengD, ZhouF, Li Z-Y, Li X, Xia Y: A quantitative study on the photothermal effect of immuno gold nanocages targeted to breast cancer cells. ACS Nano.2, 1645–1652 (2008).
  • Chen J , WangD, XiJet al.: Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells.Nano Lett.7, 1318–1322 (2007).
  • Nikoobakht B , El-SayedMA: Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method.Chem. Mater.15, 1957–1962 (2003).
  • Sau TK , MurphyCJ: Seeded high yield synthesis of short Au nanorods in aqueous solutionLangmuir20, 6414–6420 (2004).
  • Liao H , HafnerJH: Gold nanorod bioconjugation.Chem. Mater.17, 436–4641 (2005).
  • Yu C , IrudayarajJ: Multiplex biosensor using gold nanorods.Anal. Chem.79, 572–579 (2007).
  • Huang X , El-SayedIH, QianW, El-SayedMA: Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker.Nano Lett.7, 1591–1597 (2007).
  • Durr NJ , LarsonT, SmithDK, KorgelBA, SokolovK, Ben-yakarA: Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods.Nano Lett.7, 941–945 (2007).
  • Huff TB , HansenMN, ZhaoY, Cheng J-X, Wei A: Controlling the cellular uptake of gold nanorods. Langmuir23, 1596–1599 (2007).
  • Huff TB , TongL, ZhaoY, HansenMN, Cheng J-X, Wei A: Hyperthermic effects of gold nanorods on tumor cells. Nanomed.2, 125–132 (2007).
  • Tong L , ZhaoY, HuffTB, HansenMN, WeiA, Cheng J-X: Gold nanorods medicate tumor cell death by compromising membrane integrity. Adv. Mater.19, 3136–3141 (2007).
  • Takahashi H , NiidomeY, NiidomeT, KanekoK, KawasakiH, YamadaS: Modification of gold nanorods using phosphatidylcholine to reduce cytotoxicity.Langmuir22, 2–5 (2006).
  • Chen C-C , Lin Y-P, Wang C-W et al.: DNA–gold nanorods conjugates for remote control of localized gene expression by near infrared irradiation. J. Am. Chem. Soc.128, 3709–3715 (2006).
  • Oyelere AK , ChenPC, HuangX, El-SayedIH, El-SayedMA: Peptide-conjugated gold nanorods for nuclear targeting.Bioconjug. Chem.18, 1490–1497 (2007).
  • Niidome T , YamagataM, OkamotoYet al.: PEG-modified gold nanorods with a stealth character for in vivo applications.J. Control. Release114, 343–347 (2006).
  • Hotchkiss JW , LoweAB, BoyesSG: Surface modification of gold nanorods with polymers synthesized by reversible addition-fragmentation chain transfer polymerization.Chem. Mater.19, 6–13 (2007).
  • Hauck TS , GhazaniAA, ChanWCW: Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells.Small4, 153–159 (2008).
  • Sonnichsen C , AlivisatosAP: Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy.Nano Lett.5, 301–304 (2005).
  • Murphy CJ , GoleAM, HunyadiSEet al.: Chemical sensing and imaging with metallic nanorods.Chem. Commun.5, 544–557 (2008).
  • Wang H , HuffTB, ZweifelDAet al.: In vitro and in vivo two-photon luminescence imaging of single gold nanorods.Proc. Natl Acad. Sci. USA102, 15752–15756 (2005).
  • Imura K , NagaharaT, OkamotoH: Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes.J. Phys. Chem. B109, 13214–13220 (2005).
  • Link S , El-SayedMA: Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods.J. Phys. Chem. B103, 8410–8426 (1999).
  • Chou C-H , Chen C-D, Wang CRC: Highly efficient, wavelength-tunable, gold nanoparticle based optothermal nanoconvertors. J. Phys. Chem. B109, 11135–11138 (2005).
  • Huang X , El-SayedIH, QianW, El-SayedMA: Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods.J. Am. Chem. Soc.128, 2115–2120 (2006).
  • Jain PK , LeeKS, El-SayedIH, El-SayedMA: Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine.J. Phys. Chem. B110, 7238–7248 (2006).
  • Takahashi H , NiidomeY, YamadaS: Controlled release of plasmid DNA from gold nanorods induced by pulsed near-infrared light.Chem. Commun.17, 2247–2249 (2005).
  • Murphy CJ , GoleAM, StoneJWet al.: Gold nanoparticles in biology: beyond toxicity to cellular imaging.Acc. Chem. Res.41(12), 1721–1730 (2008).
  • Takahashi H , NiidomeT, NariaiA, NiidomeY, YamadaS: Gold nanorod-sensitized cell death: Microscopic observation of single living cells irradiated by pulsed near-infrared laser light in the presence of gold nanorods.Chem. Lett.35, 500–501 (2006).
  • Pissuwan D , ValenzuelaSM, InformationCet al.: Targeted destruction of murine macrophage cells with bioconjugated gold nanorods.J. Nanoparticle Res.9, 1109–1124 (2007).
  • Norman RS , StoneJW, GoleA, MurphyCJ, Sabo-AttwoodTL: Targeted photothermal lysis of the pathogenic bacteria, pseudomonas aeruginosa, with gold nanorods.Nano Lett.8, 302–306 (2008).
  • He W , HenneWA, WeiQet al.: Two-photon luminescence imaging of bacillus spores using peptide-functionalized gold nanorods.Nano Res.1, 450–456 (2008).
  • Zweifel DA , WeiA: Sulfide-arrested growth of gold nanorods.Chem. Mater.17, 4256–4261 (2005).
  • Orendorff CJ , MurphyCJ: Quantitation of metal content in the silver-assisted growth of gold nanorods.J. Phys. Chem. B110, 3990–3994 (2006).
  • Li T , HuJ, ThomasJA, LiL: Differential induction of apoptosis by LPS and taxol in monocytic cells.Mol. Immunol.42, 1049–1055 (2005).
  • Fulda S , DebatinKM: Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy.Oncogene25, 4798–4811 (2006).
  • Poot M , PierceRH: Detection of changes in mitochondrial function during apoptosis by simultaneous staining with multiple fluorescent dyes and correlated multiparameter flow cytometry.Cytometry35, 311–317 (1999).
  • Mignotte B , VayssiereJL: Mitochondria and apoptosis.Eur. J. Biochem.252, 1–15 (1998).
  • Lin CP , KellyMW: Cavitation and acoustic emission around laser-heated microparticles.Appl. Phys. Lett.72, 2800–2802 (1998).
  • Crompton M : The mitochondrial permeability transition pore and its role in cell death.Biochem. J.341, 233–249 (1999).
  • Sherman AI , Ter-PogossianM: Lymph-node concentration of radioactive colloidal gold following interstitial injection.Cancer6, 1238–1240 (1953).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.