543
Views
10
CrossRef citations to date
0
Altmetric
Review

Stimulus-Responsive Targeted Nanomicelles for Effective Cancer Therapy

, , &
Pages 657-667 | Published online: 07 Aug 2009

Bibliography

  • Moghimi SM , HunterAC, MurrayJC: Long-circulating and target-specific nanoparticles: theory to practice.Pharmacol. Rev.53, 283–318 (2001).
  • Roco MC : Nanotechnology: convergence with modern biology and medicine.Curr. Opin. Biotechnol.14, 337–346 (2003).
  • Wilkinson JM : Nanotechnology applications in medicine.Med. Device Technol.14, 29–31 (2003).
  • Green JJ , ShiJ, ChiuEet al.: Biodegradable polymeric vectors for gene delivery to human endothelial cells.Bioconjug. Chem.17, 1162–1169 (2006).
  • Torchilin VP : Targeted pharmaceutical nanocarriers for cancer therapy and imaging.AAPS J.9, E128–E147 (2007).
  • Muthu MS , SinghS: Studies on biodegradable polymeric nanoparticles of risperidone: in vitro and in vivo evaluation.Nanomedicine3, 305–319 (2008).
  • Muthu MS , SinghS: Targeted nanomedicines: effective treatment modalities for cancer, AIDS and brain disorders.Nanomedicine4, 105–118 (2009).
  • Sahoo SK , LabhasetwarV: Nanotech approaches to drug delivery and imaging.Drug Discov. Today8, 1112–1120 (2003).
  • Jones M , LerouxJ: Polymeric micelles – a new generation of colloidal drug carriers.Eur. J. Pharm. Biopharm.48, 101–111 (1999).
  • Adams ML , LavasanifarA, KwonGS: Amphiphilic block copolymers for drug delivery.J. Pharm. Sci.92, 1343–1355 (2003).
  • Gaucher G , DufresneMH, SantVPet al.: Block copolymer micelles: preparation, characterization and application in drug delivery.J. Control. Release109, 169–188 (2005).
  • Mahmud A , XiongX, MontazeriHet al.: Polymeric micelles for drug targeting.J. Drug Target.15, 553–584 (2007).
  • La S , OkanoT, KataokaK: Preparation and characterization of the micelles-forming polymeric drug: indomethacin-incorporated poly(ethylene oxide)–poly(β-benzyl L-aspartate) block copolymer micelles.J. Pharm. Sci.85, 85–90 (1996).
  • Yamamoto Y , YasugiK, HaradaAet al.: Temperature related change in the properties relevant to drug delivery of poly(ethylene glycol)–poly(D,L-lactide) block copolymer micelles in aqueous milieu.J. Control. Release82, 359–371 (2002).
  • Nishiyama N , KataokaK: Current state, achievements, and future prospects of polymeric micelles as nanocarrier for drug and gene delivery.Pharmacol. Ther.112, 630–648 (2006).
  • Uziely B , JeffersS, IsacsonRet al.: Liposomal doxorubicin: antitumor activity and unique toxicities during two complementary Phase I studies.J. Clin. Oncol.13, 1777–1785 (1995).
  • Muggia F , HamsworthJL, JeffersSet al.: Phase II study of liposomal doxorubicin in refractory ovarian cancer: antitumor activity and toxicity modification by liposomal encapsulation.J. Clin. Oncol.15, 987–993 (1996).
  • Gordon AN , FleagleJT, GuthrieDet al.: Recurrent epithelial ovarian carcinoma: a randomized Phase III study of pegylated liposomal doxorubicin vs. topotecan.J. Clin. Oncol.19, 3312–3322 (2001).
  • Matsumura Y , HamaguchiT, UraTet al.: Phase I clinical trial and pharmacokinetic evaluation of NK911, micelle-encapsulated doxorubicin.Br. J. Cancer91, 1775–1781 (2004).
  • Peer D , KarpJM, HongSet al.: Nanocarriers as an emerging platform for cancer therapy.Nat. Nanotechnol.2, 751–760 (2007).
  • Ferrari M : Cancer nanotechnology: opportunities and challenges.Nat. Rev. Cancer5, 161–171 (2005).
  • Nishiyama N , KataokaK: Development of polymeric micelles for the delivery of antitumor agents.Gan To Kagaku Ryoho36, 357–361 (2009).
  • Uchino H , MatsumuraY, NegishiTet al.: Cisplatin-incorporated polymeric micelle (NC-6004) can reduce nephrotoxicity and neurotoxicity of cisplatin in rats.Br. J. Cancer19, 678–687 (2005).
  • Mizumura Y , MatsumuraY, YokoyamaMet al.: Incorporation of the anticancer agent KRN5500 into polymeric micelles diminishes the pulmonary toxicity.Jpn J. Cancer Res.93, 1237–1243 (2002).
  • Negishi T , KoizumiF, UchinoHet al.: NK105, a paclitaxel-incorporating micellar nanoparticle, is a more potent radiosensitizing agent compared with free paclitaxel.Br. J. Cancer95, 601–606 (2006).
  • Pridgen EM , LangerR, FarokhzadOC: Biodegradable, polymeric nanoparticle delivery systems for cancer therapy.Nanomedicine2, 669–680 (2007).
  • Yoo HS , ParkTG: Folate receptor targeted biodegradable polymeric doxorubicin micelles.J. Control. Release96, 273–283 (2004).
  • Sawant RM , HurleyJP, SalmasoSet al.: “SMART” drug delivery systems: double-targeted pH-responsive pharmaceutical nanocarriers.Bioconjug. Chem.17, 943–949 (2006).
  • Torchilin V : Multifunctional and stimuli-sensitive pharmaceutical nanocarriers.Eur. J. Pharm. Biopharm.71, 431–444 (2009).
  • Ganta S , DevalapallyH, ShahiwalaA, AmijiM: A review of stimuli-responsive nanocarriers for drug and gene delivery.J. Control. Release126, 187–204 (2008).
  • Singh S , NalwaHS: Nanotechnology and health safety-toxicity and risk assessments of nanostructured materials on human health.J. Nanosci. Nanotechnol.7, 3048–3070 (2007).
  • Jain RK : Delivery of molecular and cellular medicine to solid tumors.Adv. Drug Deliv. Rev.46, 149–168 (2001).
  • Yamamoto Y , NagasakiY, KatoYet al.: Long-circulating poly(ethylene glycol)–poly(D,L-lactide) block copolymer micelles with modulated surface charge.J. Control. Release77, 27–38 (2001).
  • Torchilin VP : Micellar nanocarriers: pharmaceutical perspectives.Pharm. Res.24, 1–16 (2007).
  • Steinhauser I , SpankuchB, StrebhardtKet al.: Trastuzumab-modified nanoparticles: optimisation of preparation and uptake in cancer cells.Biomaterials27, 4975–4983 (2006).
  • Tiefenauer LX , KuhneG, AndresRY: Antibody–magnetite nanoparticles: in vitro characterization of a potential tumor-specific contrast agent for magnetic resonance imaging.Bioconjug. Chem.4, 347–352 (1993).
  • Hood JD , BednarskiM, FraustoRet al.: Tumor regression by targeted gene delivery to the neovasculature.Science296, 2404–2407 (2002).
  • Pasqualini R , RuoslahtiE: Organ targeting in vivo using phase display peptide libraries.Nature380, 364–366 (1996).
  • Pasqualini R , KoivunenE, RuoslahtiE: α v integrins as receptors for tumor targeting by circulating ligands.Nat. Biotechnol.15, 542–546 (1997).
  • Parker N , TurkMJ, WestrickEet al.: Folate receptor expression in carcinomas and normal tissues determined by a quantitative radio ligand binding assay.Anal. Biochem.338, 284–293 (2005).
  • Sinha R , KimGJ, NieS, ShinDM: Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery.Mol. Cancer. Ther.5, 1909–1917 (2006).
  • Harris AL , HochhauserD: Mechanisms of multidrug resistance in cancer treatment.Acta Oncol.31, 205–213 (1992).
  • Tsuruo T , NaitoM, TomidaAet al.: Molecular targeting therapy of cancer: drug resistance, apoptosis and survival signal.Cancer Sci.94, 15–21 (2003).
  • Jabr-Milane LS , van Vlerken LE, Yadav S, Amiji MM: Multi-functional nanocarriers to overcome tumor drug resistance. Cancer Treat. Rev.34, 592–602 (2008).
  • Gottesman MM , FojoT, BatesSE: Multidrug resistance in cancer: role of ATP-dependent transporters.Nat. Rev.2, 48–58 (2002).
  • Wu J , LuY, LeeAet al.: Reversal of multidrug resistance by transferrin-conjugated liposomes co-encapsulating doxorubicin and verapamil.J. Pharm. Pharm. Sci.10, 350–357 (2007).
  • van Vlerken LE , DuanZ, SeidenMV, AmijiMM: Modulation of intracellular ceramide using polymeric nanoparticles to overcome multidrug resistance in cancer.Cancer Res.67, 4843–4850 (2007).
  • Devalapally H , ShenoyD, LittleSet al.: Poly(ethylene oxide)-modified poly(b-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: part 3. Therapeutic efficacy and safety studies in ovarian cancer xenograft model.Cancer Chemother. Pharmacol.59, 477–484 (2007).
  • Venne A , LiS, MandevilleRet al.: Hypersensitizing effect of pluronic L61 on cytotoxic activity, transport, and subcellular distribution of doxorubicin in multiple drug resistant cells.Cancer Res.56, 3626–3629 (1996).
  • Lee ES , NaK, BaeYH: Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor.J. Control. Release103, 405–418 (2005).
  • Bae Y , NishiyamaN, FukushimaSet al.: Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy.Bioconjug. Chem.16, 122–130 (2005).
  • Bae Y , FukushimaS, HaradaA, KataokaK: Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: polymeric micelles that are responsive to intracellular pH change.Angew. Chem. Int. Ed.42, 4640–4643 (2003).
  • Bae Y , NishiyamaN, FukushimaSet al.: Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy.Bioconjug. Chem.16, 122–130 (2005).
  • Bae Y , JangWD, NishiyamaNet al.: Multifunctional polymeric micelles with folate-mediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery.Mol. Biosyst.1, 242–250 (2005).
  • Lee ES , NaK, BaeYH: Super pH-sensitive multifunctional polymeric micelle.Nano Lett.5, 325–329 (2005).
  • Klaikherd A , NagamaniC, ThayumanavanS: Multi-stimuli sensitive amphiphilic block copolymer assemblies.J. Am. Chem. Soc.131(13), 4830–4838 (2009).
  • Lee ES , GaoZ, KimDet al.: Super pH-sensitive multifunctional polymeric micelle for tumor pHe specific TAT exposure and multidrug resistance.J. Control. Release129, 228–236 (2008).
  • Liu SQ , TongYW, YangYY: Thermally sensitive micelles self assembled from poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide)-b-poly(D,L-lactide-co-glycolide) for controlled delivery of paclitaxel.Mol. Biosyst.1, 158–165 (2005).
  • Chung JE , YokoyamaM, YamatoMet al.: Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly(N-isopropylacrylamide) and poly(butylmethacrylate).J. Control. Release62, 115–127 (1999).
  • De P , GondiSR, SumerlinBS: Folate conjugated thermoresponsive block copolymers: high efficient conjugation and solution self-assembly.Biomacromolecules9, 1064–1070 (2008).
  • Saito G , SwansonJA, LeeKD: Drug delivery strategy utilizing conjugation via reversible disulfide linkages: role and site of cellular reducing activities.Adv. Drug Deliv. Rev.55, 199–215 (2003).
  • Cavallaro G , CampisiM, LicciardiMet al.: Reversibly stable thiopolyplexes for intracellular delivery of genes.J. Control. Release115, 322–334 (2006).
  • Tartaj P , del Puerto Morales M, Veintemillas-Verdaguer S et al.: The preparation of magnetic nanoparticle for applications in biomedicine. J. Phys. D Appl. Phys.36, R182–R197 (2003).
  • Duguet E , VasseurS, MornetSet al.: Magnetic nanoparticles and their applications in medicine.Nanomedicine1, 157–168 (2006).
  • Cinteza LO , OhulchanskyyTY, SahooYet al.: Diacyllipid micelle-based nanocarrier for magnetically guided delivery of drugs in photodynamic therapy.Mol. Pharm.3, 415–423 (2006).
  • Kim GC , LiYY, ChuYFet al.: A nanosized thermo-sensitive drug carrier: self-assembled Fe3O4-OA-g-P(OA-co-NIPAAm) magnetomicelles.J. Biomater. Sci. Polym. Ed.19, 1249–1259 (2008).
  • Talelli M , RijckenCJF, LammersTet al.: Superparamagnetic iron oxide nanoparticles encapsulated in biodegradable thermosensitive polymeric micelles: towards a targeted nanomedicine suitable for image guided drug delivery.Langmuir25, 2060–2067 (2009).
  • Hong G , YuanR, LiangBet al.: Folate-functionalized polymeric micelle as hepatic carcinoma-targeted, MRI-ultrasensitive delivery system of antitumor drugs.Biomed. Microdevices10, 693–700 (2008).
  • Marin A , MuniruzzamanM, RapoportN: Mechanism of the ultrasonic activation of micellar drug delivery.J. Control. Release75, 69–81 (2001).
  • Husseini GA , PittWG: Ultrasonic-activated micellar drug delivery for cancer treatment.J. Pharm. Sci.98, 795–811 (2009).
  • Gao Z , FainHD, RapoportN: Ultrasound-enhanced tumor targeting of polymeric micellar drug carriers.Mol. Pharm.1, 317–330 (2004).
  • Pruitt JD , PittWG: Sequestration and ultrasound-induced release of doxorubicin from stabilized Pluronic P105 micelles.Drug Deliv.9, 253–258, (2002).
  • Yang X , ChenY, YuanRet al.: Folate-encoded and Fe3O4-loaded polymeric micelles for dual targeting of cancer cells.Polymer49, 3477–3485 (2008).
  • Nasongkla N , BeyE, RenJet al.: Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems.Nano Lett.6, 2427–2430 (2006).
  • Moghimi SM , HunterAC, MurrayJC: Nanomedicine: current status and future prospects.FASEB J.19, 311–330 (2005).
  • Lam KH , SchakenraadJM, EsselbruggeHet al.: The effect of phagocytosis of poly(L-lactic acid) fragments on cellular morphology and viability.J. Biomed. Mat. Res.27, 1569–1577 (1993).
  • Batrakova EV , LiS, AlakhovVYet al.: Optimal structure requirements for pluronic block copolymers in modifying P-glycoprotein drug efflux transporter activity in bovine brain microvessel endothelial cells.J. Pharmacol. Exp. Ther.304, 845–854 (2003).
  • Nishiyama N , KoizumiF, OkazakiSet al.: Differential gene expression profile between PC-14 cells treated with free cisplatin and cisplatin incorporated polymeric micelles.Bioconj. Chem.14, 449–457 (2003).
  • Kawaguchi T , HondaT, NishiharaMet al.: Histological study on side effects and tumor targeting of a block copolymer micelle on rats.J. Control. Release136, 240–246 (2009).
  • Tran TD , CaruthersSD, HughesMet al.: Clinical application of perfluorocarbon nanoparticles for molecular imaging and targeted therapeutics.Int. J. Nanomedicine2, 515–526 (2007).
  • Warner S : Diagnostic plus therapy = theranostics.Scientist18, 38–39 (2004).
  • Sumer B , GaoJ: Theranostic nanomedicine for cancer.Nanomedicine3(2), 137–140 (2008).
  • Jain KK : Role of nanobiotechnology in the development of personalized medicine.Nanomedicine4(3), 249–252 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.