869
Views
2
CrossRef citations to date
0
Altmetric
Review

Nanotechnology for Treatment of Stroke and Spinal Cord Injury

&
Pages 99-108 | Published online: 21 Dec 2009

Bibliography

  • Morizane A , LiJY, BrundinP: From bench to bed: the potential of stem cells for the treatment of Parkinson‘s disease.Cell Tissue Res.331(1), 323–336 (2008).
  • Pluchino S , ZanottiL, BriniE, FerrariS, MartinoG: Regeneration and repair in multiple sclerosis: The role of cell transplantation.Neurosci. Lett.456(3), 101–106 (2009).
  • Hess DC , BorlonganCV: Stem cells and neurological diseases.Cell Prolif.41Suppl 1, 94–114 (2008).
  • Syková E , HomolaA, MazanecRet al.: Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury.Cell Transplant15(8–9), 675–687 (2006).
  • Mackay-Sim A , FeronF, CochraneJet al.: Autologous olfactory ensheathing cell transplantation in human paraplegia: A 3-year clinical trial.Brain131(9), 2376–2386 (2008).
  • Yoon SH , ShimYS, ParkYHet al.: Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: Phase I/II clinical trial.Stem cells25(8), 2066–2073 (2007).
  • Jendelová P , HerynekV, UrdzíkováLet al.: Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord.J. Neurosci. Res.76(2), 232–243 (2004).
  • Bacigaluppi M , PluchinoS, MartinoG, KilicE, HermannDM: Neural stem/precursor cells for the treatment of ischemic stroke.J. Neurol. Sci.265(1–2), 73–77 (2008).
  • Fouad K , SchnellL, BungeMB, SchwabME, LiebscherT, PearseDD: Combining Schwann cell bridges and olfactory-ensheathing glia grafts with chondroitinase promotes locomotor recovery after complete transection of the spinal cord.J Neurosci25(5), 1169–1178 (2005).
  • Kode JA , MukherjeeS, JoglekarMV, HardikarAA: Mesenchymal stem cells: Immunobiology and role in immunomodulation and tissue regeneration.Cytotherapy11(4), 377–391 (2009).
  • Li Y , ChoppM: Marrow stromal cell transplantation in stroke and traumatic brain injury.Neurosci. Lett.456(3), 120–123 (2009).
  • Syková E , JendelováP: Migration, fate and in vivo imaging of adult stem cells in the CNS.Cell Death Differ.14(7), 1336–1342 (2007).
  • Ellis-Behnke RG , TeatherLA, SchneiderGE, SoKF: Using nanotechnology to design potential therapies for CNS regeneration.Curr. Pharm. Des.13(24), 2519–2528 (2007).
  • Borlongan CV , MasudaT, WalkerTAet al.: Nanotechnology as an adjunct tool for transplanting engineered cells and tissues.Curr. Mol. Med.7(7), 609–618 (2007).
  • Mailander V , LorenzMR, HolzapfelVet al.: Carboxylated superparamagnetic iron oxide particles label cells intracellularly without transfection agents.Mol. Imaging Biol.10(3), 138–146 (2008).
  • Babič M , HorákD, TrchováMet al.: Poly(L-lysine)-modified iron oxide nanoparticles for stem cell labeling.Bioconjug. Chem.19(3), 740–750 (2008).
  • Horák D , BabičM, JendelováPet al.: Effect of different magnetic nanoparticle coatings on the efficiency of stem cell labeling.J. Magn. Magn. Mater.321(10), 1539–1547 (2009).
  • Bulte JW , ZhangS, Van Gelderen P et al.: Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination. Proc. Natl Acad. Sci. USA96(26), 15256–15261 (1999).
  • Bulte JW , DouglasT, WitwerBet al.: Monitoring stem cell therapy in vivo using magnetodendrimers as a new class of cellular MR contrast agents.Acad. Radiol.9(Suppl. 2), S332–S335 (2002).
  • Kircher MF , AllportJR, GravesEEet al.: In vivo high resolution three-dimensional imaging of antigen-specific cytotoxic T-lymphocyte trafficking to tumors.Cancer Res.63(20), 6838–6846 (2003).
  • Gilad AA , WalczakP, McmahonMTet al.: MR tracking of transplanted cells with “positive contrast” using manganese oxide nanoparticles.Magn. Reson. Med.60(1), 1–7 (2008).
  • Reddy AM , KwakBK, ShimHJet al.: Functional characterization of mesenchymal stem cells labeled with a novel PVP-coated superparamagnetic iron oxide.Contrast Media Mol.4(3), 118–126 (2009).
  • Liu HM , WuSH, LuCWet al.: Mesoporous silica nanoparticles improve magnetic labeling efficiency in human stem cells.Small4(5), 619–626 (2008).
  • Arbab AS , YocumGT, RadAMet al.: Labeling of cells with ferumoxides–protamine sulfate complexes does not inhibit function or differentiation capacity of hematopoietic or mesenchymal stem cells.NMR Biomed.18(8), 553–559 (2005).
  • Stoll G , BendszusM: Imaging of inflammation in the peripheral and central nervous system by magnetic resonance imaging.Neuroscience158(3), 1151–1160 (2009).
  • Saleh A , WiedermannD, SchroeterM, JonkmannsC, JanderS, HoehnM: Central nervous system inflammatory response after cerebral infarction as detected by magnetic resonance imaging.NMR Biomed.17(4), 163–169 (2004).
  • Wiart M , DavoustN, PialatJBet al.: MRI monitoring of neuroinflammation in mouse focal ischemia.Stroke38(1), 131–137 (2007).
  • Foley LM , HitchensTK, HoCet al.: Magnetic resonance imaging assessment of macrophage accumulation in mouse brain after experimental traumatic brain injury.J. Neurotrauma26(9), 1509–1519 (2009).
  • Kleinschnitz C , BendszusM, FrankM, SolymosiL, ToykaKV, StollG: In vivo monitoring of macrophage infiltration in experimental ischemic brain lesions by magnetic resonance imaging.J. Cereb. Blood Flow Metab.23(11), 1356–1361 (2003).
  • Zhang ZG , JiangQ, ZhangRet al.: Magnetic resonance imaging and neurosphere therapy of stroke in rat.Ann. Neurol.53(2), 259–263 (2003).
  • Jiang Q , ZhangZG, DingGLet al.: Investigation of neural progenitor cell induced angiogenesis after embolic stroke in rat using MRI.Neuroimage28(3), 698–707 (2005).
  • Kim D , ChunBG, KimYKet al.: In vivo tracking of human mesenchymal stem cells in experimental stroke.Cell Transplant.16(10), 1007–1012 (2008).
  • Modo M , MellodewK, CashDet al.: Mapping transplanted stem cell migration after a stroke: a serial, in vivo magnetic resonance imaging study.NeuroImage21(1), 311–317 (2004).
  • Modo M , BeechJS, MeadeTJ, WilliamsSC, PriceJ: A chronic 1 year assessment of MRI contrast agent-labnanoscale neural stem cell transplants in stroke.NeuroImage47(Suppl. 2), T133–T142 (2009).
  • Lee ES , ChanJ, ShuterBet al.: Microgel iron oxide nanoparticles for tracking human fetal mesenchymal stem cells through magnetic resonance imaging.Stem Cells27(8), 1921–1931 (2009).
  • Bulte JW , Ben-HurT, MillerBRet al.: MR microscopy of magnetically labeled neurospheres transplanted into the lewis eae rat brain.Magn. Reson. Med.50(1), 201–205 (2003).
  • Lee JY , BashurCA, GoldsteinAS, SchmidtCE: Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications.Biomaterials30(26), 4325–4335 (2009).
  • Dunning MD , LakatosA, LoizouLet al.: Superparamagnetic iron oxide-labeled schwann cells and olfactory ensheathing cells can be traced in vivo by magnetic resonance imaging and retain functional properties after transplantation into the CNS.J. Neurosci.24(44), 9799–9810 (2004).
  • Politi LS , BacigaluppiM, BrambillaEet al.: Magnetic-resonance-based tracking and quantification of intravenously injected neural stem cell accumulation in the brains of mice with experimental multiple sclerosis.Stem Cells25(10), 2583–2592 (2007).
  • Jendelová P , HerynekV, DecroosJet al.: Imaging the fate of implanted bone marrow stromal cells labeled with superparamagnetic nanoparticles.Magn. Reson. Med.50(4), 767–776 (2003).
  • Syková E , JendelováP: Magnetic resonance tracking of transplanted stem cells in rat brain and spinal cord.Neurodegener Dis.3(1–2), 62–67 (2006).
  • Hinds KA , HillJM, ShapiroEMet al.: Highly efficient endosomal labeling of progenitor and stem cells with large magnetic particles allows magnetic resonance imaging of single cells.Blood102(3), 867–872 (2003).
  • Yang J , LiuJ, NiuGet al.: In vivo MRI of endogenous stem/progenitor cell migration from subventricular zone in normal and injured developing brains.NeuroImage48(2), 319–328 (2009).
  • Hejčl A , LesnýP, PřádnýMet al.: Biocompatible hydrogels in spinal cord injury repair.Physiol. Res.57(Suppl. 3), S121–S132 (2008).
  • Amsalem Y , MardorY, FeinbergMSet al.: Iron-oxide labeling and outcome of transplanted mesenchymal stem cells in the infarcted myocardium.Circulation116(Suppl. 11), I38–45 (2007).
  • Yano S , KurodaS, ShichinoheH, HidaK, IwasakiY: Do bone marrow stromal cells proliferate after transplantation into mice cerebral infarct? A double labeling study.Brain Res.1065(1–2), 60–67 (2005).
  • Gilad AA , WinnardPT Jr, Van Zijl PC, Bulte JW: Developing MR reporter genes: promises and pitfalls. NMR Biomed.20(3), 275–290 (2007).
  • Guzman R , UchidaN, BlissTMet al.: Long-term monitoring of transplanted human neural stem cells in developmental and pathological contexts with MRI.Proc. Natl Acad. Sci. USA104(24), 10211–10216 (2007).
  • Raineteau O : Plastic responses to spinal cord injury.Behav. Brain Res.192(1), 114–123 (2008).
  • Silver J , MillerJH: Regeneration beyond the glial scar.Nat. Rev. Neurosci.5(2), 146–156 (2004).
  • Hulsebosch CE : Recent advances in pathophysiology and treatment of spinal cord injury.Adv. Physiol. Educ.26(1–4), 238–255 (2002).
  • Novikova LN , PetterssonJ, BrohlinM, WibergM, NovikovLN: Biodegradable poly-beta-hydroxybutyrate scaffold seeded with Schwann cells to promote spinal cord repair.Biomaterials29(9), 1198–1206 (2008).
  • Novikova LN , NovikovLN, KellerthJO: Biopolymers and biodegradable smart implants for tissue regeneration after spinal cord injury.Curr. Opin. Neurol.16(6), 711–715 (2003).
  • Hejčl A , LesnýP, PřádnýMet al.: Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 6: 3D hydrogels with positive and negative surface charges and polyelectrolyte complexes in spinal cord injury repair.J. Mater. Sci. Mater. Med.20(7), 1571–1577 (2009).
  • Kubinová Š, Horák D, Syková E: Cholesterol-modified superporous poly(2-hydroxyethyl methacrylate) scaffolds for tissue engineering. Biomaterials30(27), 4601–4609 (2009).
  • Tsai EC , DaltonPD, ShoichetMS, TatorCH: Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection.Biomaterials27(3), 519–533 (2006).
  • Madaghiele M , SanninoA, YannasIV, SpectorM: Collagen-based matrices with axially oriented pores.J. Biomed. Mater. Res. A85(3), 757–767 (2008).
  • Hejčl A , ŠedýJ, LesnýPet al.: Biocompatible hydrogels in spinal cord injury repair. Program No. 904.5/AA9. 2007 Neuroscience Meeting Planner. Society for Neuroscience. San Diego, CA, USA, Online (2007).
  • Vasita R , KattiDS: Nanofibers and their applications in tissue engineering.Int. J. Nanomedicine1(1), 15–30 (2006).
  • Chong EJ , PhanTT, LimIJet al.: Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution.Acta Biomater.3(3), 321–330 (2007).
  • Wang ZG , WanLS, LiuZM, HuangXJ, XuZK: Enzyme immobilization on electrospun polymer nanofibers.J. Mol. Catal. B Enzymatic (2009) (Epub ahead of print).
  • Hadjiargyrou M , ChiuJB: Enhanced composite electrospun nanofiber scaffolds for use in drug delivery.Expert Opin. Drug Deliv.5(10), 1093–1106 (2008).
  • Huang ZM , ZhangYZ, KotakiM, RamakrishnaS: A review on polymer nanofibers by electrospinning and their applications in nanocomposites.Compos. Sci. Technol.63, 2223–2253 (2003).
  • Martins A , ReisRL: Electrospinning: processing technique for tissue engineering scaffolding.Int. Mat. Rev.53, 257–274 (2008).
  • Niece KL , HartgerinkJD, DonnersJM, StuppSI: Self-assembly combining two bioactive peptide-amphiphile molecules into nanofibers by electrostatic attraction.J. Am. Chem. Soc.125, 7146–7147 (2003).
  • Xing X , WangY, LiB: Nanofibers drawing and nanodevices assembly in poly(trimethylene terephtalate).Opt. Express16, 10815–10822 (2008).
  • Ma PX , ZhangR: Synthetic nano-scale fibrous extracellular matrix.J. Biomed. Mater. Res.46(1), 60–72 (1999).
  • Mckenzie JL , WaidMC, ShiR, WebsterTJ: Decreased functions of astrocytes on carbon nanofiber materials.Biomaterials25(7–8), 1309–1317 (2004).
  • Kubinová Š, Dubský M, Michálek J et al.: Cell-seeded electrospun nanofibers as scaffolds in tissue regeneration. Tissue Eng. Reg. Med.6(12), S247 (2009).
  • Kumbar SG , JamesR, NukavarapuSP, LaurencinCT: Electrospun nanofiber scaffolds: engineering soft tissues.Biomed. Mater.3(3), 034002 (2008).
  • Yang F , MuruganR, WangS, RamakrishnaS: Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering.Biomaterials26(15), 2603–2610 (2005).
  • Schnell E , KlinkhammerK, BalzerSet al.: Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-epsilon-caprolactone and a collagen/poly-epsilon-caprolactone blend.Biomaterials28(19), 3012–3025 (2007).
  • Corey JM , LinDY, MycekKBet al.: Aligned electrospun nanofibers specify the direction of dorsal root ganglia neurite growth.J. Biomed. Mater. Res. A83(3), 636–645 (2007).
  • Wang W , ItohS, MatsudaAet al.: Enhanced nerve regeneration through a bilayered chitosan tube: the effect of introduction of glycine spacer into the CYIGSR sequence.J. Biomed. Mater. Res. A85(4), 919–928 (2008).
  • Panseri S , CunhaC, LoweryJet al.: Electrospun micro- and nanofiber tubes for functional nervous regeneration in sciatic nerve transections.BMC Biotechnol.8, 39 (2008).
  • Rochkind S , ShaharA, FlissDet al.: Development of a tissue-engineered composite implant for treating traumatic paraplegia in rats.Eur. Spine J.15(2), 234–245 (2006).
  • Zhang S , GelainF, ZhaoX: Designer self-assembling peptide nanofiber scaffolds for 3D tissue cell cultures.Semin. Cancer Biol.15(5), 413–420 (2005).
  • Silva GA , CzeislerC, NieceKLet al.: Selective differentiation of neural progenitor cells by high-epitope density nanofibers.Science303(5662), 1352–1355 (2004).
  • Tysseling-Mattiace VM , SahniV, NieceKLet al.: Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury.J. Neurosci.28(14), 3814–3823 (2008).
  • Ellis-Behnke RR , LiangYX, YouSWet al.: Nano neuro knitting: Peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision.Proc. Natl Acad. Sci. USA103(13), 5054–5059 (2006).
  • Holmes TC , De Lacalle S, Su X, Liu G, Rich A, Zhang S: Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds. Proc. Natl Acad. Sci. USA97(12), 6728–6733 (2000).
  • Guo J , SuH, ZengYet al.: Reknitting the injured spinal cord by self-assembling peptide nanofiber scaffold.Nanomed. Nanotechnol. Biol. Med.3(4), 311–321 (2007).
  • Nguyen-Vu TD , ChenH, CassellAM, AndrewsR, MeyyappanM, LiJ: Vertically aligned carbon nanofiber arrays: an advance toward electrical-neural interfaces.Small2(1), 89–94 (2006).
  • Himmelreich U , AimeS, HieronymusTet al.: A responsive MRI contrast agent to monitor functional cell status.Neuroimage32(3), 1142–1149 (2006).
  • Hoehn M , WiedermannD, JusticiaCet al.: Cell tracking using magnetic resonance imaging.J. Physiol.584(1), 25–30 (2007).
  • Hoehn M , HimmelreichU, KruttwigK, WiedermannD: Molecular and cellular MR imaging: potentials and challenges for neurological applications.J. Magn. Reson. Imaging27(5), 941–954 (2008).

Patents

  • Horák D, Syková E, Babič M, Jendelová P, Hájek M: PV1006–120 (2007).
  • Jirsák O, Sanetrník F, Lukáš D, Kotek L, Martinová L, Chaloupek J: WO205024101 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.