1,057
Views
3
CrossRef citations to date
0
Altmetric
Review

Surface Activation and Targeting Strategies of Superparamagnetic Iron Oxide Nanoparticles in Cancer-Oriented Diagnosis and Therapy

, , , &
Pages 109-133 | Published online: 21 Dec 2009

Bibliography

  • Pankhurst QA , ConnolyJ, JonesSK, DobsonJ: Applications of magnetic nanoparticles in biomedicine.J. Phys. D.36, R167–R181 (2003).
  • Dobson J : Magnetic nanoparticle-based gene delivery.Gene Deliv.13, 283–287 (2006).
  • Dobson J : Remote control of cellular behaviour with magnetic nanoparticles.Nat. Nanotechnol.3, 139–143 (2008).
  • Kim DK , DobsonJ: Nanomedicine for targeted drug delivery.J. Mater. Chem.19, 6294–6307 (2009).
  • Lin MM , LiS, Kim H-H et al.: Complete separation of magnetic nanoparticles via chemical cleavage of dextran by ethylenediamine for intracellular uptake. J. Mater. Chem. DOI: 10.1039/b918416c (2009) (Epub ahead of print).
  • Binder WH , GlogerD, WeinstablH, AllmaierG, PittenauerE: Telechelic poly(n-isopropylacrylamides) via nitroxide-mediated controlled polymerization and “click” chemistry: livingness and “grafting-from” methodology.Macromolecules40, 3097–3107 (2007).
  • Lattuada M , HattonTA: Functionalization of monodisperse magnetic nanoparticles.Langmuir23, 2158–2168 (2007).
  • Hu F , NeohKG, CenL, Kang E-T: Cellular response to magnetic nanoparticles “PEGylated” via surface-initiated atom transfer radical polymerization. Biomacromolecules7, 809–816 (2006).
  • Fan Q-L , Neoh K-G, Kang E-T, Shuter B, Wang S-C: Solvent-free atom transfer radical polymerization for the preparation of poly(poly(ethylene glycol) monomethacrylate)-grafted Fe3O4 nanoparticles: synthesis, characterization and cellular uptake. Biomaterials28, 5426–5436 (2007).
  • Yoon T-J , Kim JS, Kim BG, Yu KN, Cho M-H, Lee J-K: Multifunctional nanoparticles possessing a “magnetic motor effect” for drug or gene delivery. Angew. Chem. Int. Ed.44, 1068–1071 (2005).
  • Huo QS , MargoleseD, CieslaUet al.: Generalized synthesis of periodic surfactant inorganic composite-materials.Nature368 (6469), 317–321 (1994).
  • Giri S , TrewynBG, StellmakerMP, LinVS: Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles.Angew. Chem. Int. Ed.44, 5038–5044 (2005).
  • Chan WCC , NieSH: Quantum dot bioconjugates for ultrasensitive nonisotopic detection.Science281, 2016–2019 (1998).
  • Xu C , XuK, GuHet al.: Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles.J. Am. Chem. Soc.126, 9938–9939 (2004).
  • Xie J , XuC, XuZet al.: Linking hydrophobic macromolecules to monodisperse magnetite (Fe3O4) nanoparticles via trichloro-s-triazine.Chem. Mater.18, 5401–5403 (2006).
  • De Palma R , PeetersS, Van Bael M et al.: Silane ligand exchange to make hydrophobic superparamagnetic nanoparticles water-dispersible. Chem. Mater.19, 1821–1831 (2007).
  • Hermanson GT : Bioconjugate Techniques (2nd Edition). Hermanson GT (Ed.). Pierce Biotechnology, Thermo Fisher Scietific, Academic Press, NY, USA (2008).
  • Lin W , FritzK, GuerinGet al.: Highly luminescent lead sulfide nanocrystals in organic solvents and water through ligand exchange with poly(acrylic acid).Langmuir24, 8215–8219 (2008).
  • Zhang T , GeJ, HuY, YinY: A general approach for transferring hydrophobic nanocrystals into water.Nano Lett.7, 3203–3207 (2007).
  • Na HB , LeeIS, SeoHet al.: Versatile PEG-derivatized phosphine oxide ligands for water dispersible metal oxide nanocrystals.Chem. Comm.48, 5167–5169 (2007).
  • Qin J , LaurentS, JoYSet al.: A high-performance magnetic resonance imaging T2 contrast agent.Adv. Mater.19, 1874–1878 (2007).
  • Shtykova EV , HuangX, RemmesNet al.: Structure and properties of iron oxide nanoparticles encapsulated by phospholipids with poly(ethylene glycol) tails.J. Phys. Chem.111, 18078–18086 (2007).
  • Xu C , WangB, SunS: Dumbbell-like Au-Fe3O4 nanoparticels for target-specific platin delivery.J. Am. Chem. Soc.131, 4216–4217 (2009).
  • Veiseh O , GunnJW, KievitFMet al.: Inhibition of tumor-cell invasion with chlorotoxin-bound superparamagnetic nanoparticles.Small5, 256–264 (2009).
  • Yang L , MaoH, WangYAet al.: Single chain epidermal growth factor receptor antibody conjugated nanoparticles for in vivo tumor targeting and imaging.Small5, 235–243 (2009).
  • Narain R , GonzalesM, HoffmanAS, StaytonPS, KrishnanKM: Synthesis of monodispers biotinylated p(NIPAAm)-coated iron oxide magnetic nanoparticles and their bioconjugation to straptavidin.Langmuir23, 6299–6304 (2007).
  • Biju V , MuraleedharanD, NakayamaKet al.: Quantum dot-Insect neuropeptide conjugates for fluorescence imaging, transfection and nucleus targeting of living cells.Langmuir23, 10254–10261 (2007).
  • Yang C , RaitA, PirolloKF, DagataJA, FarkasN, ChangEH: Nanoimmunoliposome delivery of superparamagnetic iron oxide markedly enhances targeting and uptake in human cancer cells in vitro and in vivo.Nanomedicine4, 318–329 (2008).
  • Choi HS , LiuW, MisraPet al.: Renal clearance of quantum dots.Nat. Biotechnol.25, 1165–1170 (2007).
  • Schipper ML , LyerG, KohALet al.: Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice.Small5, 126–134 (2009).
  • El-Rayes BF , LorussoPM: Targeting the epidermal growth factor receptor.B. J. Cancer91, 418–424 (2004).
  • Yang J , EomK, Lim E-K et al.: In situ detection of live cancer cells by using bioprobes based on Au nanoparticles. Langmuir24, 12112–12115 (2008).
  • Feng B , TomizawaK, MichiueHet al.: Delivery of sodium borocaptate to glioma cells using immunoliposome conjugated with anti-EGFR antibodies by ZZ-his.Biomaterials30, 1746–1755 (2009).
  • Corezzi S , UrbanelliL, CloetensPet al.: Synchrotron-based X-ray fluorescence imaging of human cells labeled with CdSe quantum dots.Anal. Biochem.388, 33–39 (2009).
  • Chen T-J , Cheng T-H, Chen C-Y et al.: Targeted Herceptin-dextran iron oxide nanoparticles for noninvasive imaging of HER2/neu receptors using MRI. J. Biol. Inorg. Chem.14, 253–260 (2009).
  • Loo C , LoweryA, HalasN, WestJ, DrezekR: Immunotargeted nanoshells for integrated cancer imaging and therapy.Nano Lett.5, 709–711 (2005).
  • Eghtedari M , LiopoAV, CoplandJA, OraevskyAA, MotamediM: Engineering of hetero-functional gold nanorods for the in vivo molecular targeting of breast cancer cells.Nano Lett.9, 287–292 (2009).
  • Lee S , ChonH, LeeMet al.: Surface-enhanced Raman scattering imaging of HER2 cancer markers overexpressed in single MCF7 cells using antibody conjugated hollow gold nanoparticles.Biosens. Bioelectron.24, 2260–2263 (2009).
  • Weng KC , NobleCO, Papahadjopoulos-SternbergBet al.: Targeted tumor cell internalization and imaging of multifunctional quantum dot-conjugated immunoliposomes in vitro and in vivo.Nano Lett.8, 2851–2857 (2008).
  • Chen J , WuH, HanD, XieC: Using anti-VEGF McAb and magnetic nanoparticles as double-targeting vector for the radioimmunotherapy for liver cancer.Cancer Lett.231, 169–175 (2006).
  • Wu X , LiuH, LiuJet al.: Immunofluorescent labelling of cancer marker HER2 and other cellular targets with semiconductor quantum dots.Nat. Biotechnol.21, 41–46 (2003).
  • Korpanty G , CarbonJG, GaryburnPA, FlemingJB, BrekkenRA: Monitoring response to anticancer therapy by targeting microbubbles to tumor vasculature.Clin. Cancer Res.13, 323–330 (2007).
  • Laakkonen P , AkermanME, BiliranHet al.: Antitumor activity of a homing peptide that targets tumor lymphatics and tumor cells.Proc. Natl Acad. Sci. USA101, 9381–9386 (2004).
  • Tammela T , ZarkadaG, WallgardEet al.: Blocking VEFR-3 suppresses angiogenic sprouting and vascular network formation.Nature454, 656–660 (2008).
  • Rosenholm JM , MeinanderA, PeuhuEet al.: Targeting of porous hybrid silica nanoparticles to cancer cells.ACS Nano3, 197–206 (2009).
  • Shi X , WangSH, SwansonSDet al.: Dendrimer-functionalized shell-crosslinked iron oxide nanoparticles for in-vivo magnetic resonance imaging of tumors.Adv. Mater.20, 1671–1678 (2007).
  • Wang SH , ShiX, Van Antwerp M et al.: Dendrimer-functionalized iron oxide nanoparticles for specific targeting and imaging of cancer cells. Adv. Func. Mater.17, 3043–3050 (2007).
  • Bharali DJ , LuceyDW, JayakumarH, PudavarHE, PrasadPN: Folate-receptor-mediated delivery of InP quantum dots for bioimaging using confocal and two-photon microscopy.J. Am. Chem. Soc.127, 11364–11371 (2005).
  • Shi X , WangS, MeshinchiSet al.: Dendrimer-entrapped gold nanoparticles as a platform for cancer-cell targeting and imaging.Small7, 1245–1252 (2007).
  • Oh J-M , Choi S-J, Lee G-E, Han S-H, Choy J-H: Inorganic drug-delivery nanovehicle conjugated with cancer-cell-specific ligand. Adv. Func. Mater.19, 1617–1624 (2009).
  • Soppimath KS , LiuLH, SeowWYet al.: Multifunctional core/shell nanoparticles self-assembled from pH-induced thermosensitive polymers for targeted intracellular anticancer drug delivery.Adv. Func. Mater.17, 355–362 (2007).
  • Kim D , LeeES, OhKT, GaoZG, BaeYH: Doxorubicin-loaded polymeric micelle overcomes multidrug resistance of cancer by double-targeting folate receptor and early endosomal pH.Small4, 2043–2050 (2007).
  • Zheng G , ChenJ, LiH, GlicksonJD: Rerouting lipoprotein nanoparticles to selected alternate receptors for the targeted delivery of cancer diagnostic and therapeutic agents.Proc. Natl Acad. Sci. USA102, 17757–17762 (2005).
  • Chen J , CorbinIR, LiH, CaoW, GlicksonJD, ZhangG: Ligand conjugation low-density lipoprotein nanoparticles for enhanced optical cancer imaging in vivo.J. Am. Chem. Soc.129, 5798–5799 (2007).
  • Qian J , LiX, WeiM, GaoX, XuZ, HeS: Bio-molecule-conjugated fluorescent organically modified silica nanoparticles as optical probes for cancer cell imaging.Optics. Expr.16, 19568–19578 (2008).
  • Li J-L , Wang L, Liu X-Y et al.: In vitro cancer cell imaging and therapy using transferrin-conjugated gold nanoparticles. Cancer Lett.274, 319–326 (2009).
  • Freedman M , ChangEH, ZhouQ, PirolloKF: Nanodelivery of MRI contrast agent enhances sensitivity of detection of lung cancer metastases.Acad. Radiol.16, 627–637 (2009).
  • Hu-Lieskovan S , HeidelJD, BartlettDW, DavisME, TricheTJ: Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing‘s sarcoma.Cancer Res.65, 8984–8992 (2005).
  • Abhilash V , BabuS, HeckertEet al.: Protonated nanoparticles surface governing ligand tethering and cellular targeting.ACS Nano3, 1203–1211 (2009).
  • Elfinger A , MauckschC, RudolphC: Characterization of lactoferrin as a targeting ligand for nonviral gene delivery to airway epithelial cells.Biomaterials28, 3448–3455 (2007).
  • Ortiz-Sanchez E , DanielsTR, HelgueraG, Martinez-MazaO, BonavidaB, PenichetML: Enhanced cytotoxicity of an anti-transferrin receptor IgG3–avidin fusion protein in combination with gambogic acid against human malignant hematopoitetic cells: functional relevance of iron, the receptor, and reactive oxygen species.Leukemia23, 59–70 (2009).
  • Horak D , BabicM, JendelovaPet al.: D-mannose-modified iron oxide nanoparticles for stem cell labelling.Bioconjug. Chem.18, (2007).
  • Brevet D , Gary-BoboM, RaehmLet al.: Mannose-targeted mesoporous silica nanoparticles for photodynamic therapy.Chem. Comm.12, 1475–1477 (2009).
  • Arnaout MA , MahalingamB, XiongJP: Integrin structure, allostery, and bidirectional signaling.Annu. Rev. Cell. Dev. Biol.21, 381–410 (2005).
  • Achilefu S , BlochS, MarkiewiczMAet al.: Synergistic effects of light-emitting probes and peptides for targeting and monitoring integrin expression.Proc. Natl Acad. Sci. USA102, 7976–7981 (2005).
  • Lee J-H , Lee K, Moon SH, Lee Y, Park TG, Cheon J: All-in-one target-cell-specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery. Angew. Chem. Int. Ed.48, 4174–4179 (2009).
  • Peng L , LiuR, MarikJ, WangX, TakadaY, LamKS: Combinational chemistry identifies high-affinity peptidomimetics against a4b1 integrin for in vivo tumor imaging.Nat. Chem. Bio.2, 381–389 (2006).
  • Liu R , PengL, HanH, LamKS: Structure-activity relationship studies of a series of peptidomimetic ligand for α4β1 integrin on Jurkat T-leukemia cells.Biopolymers84, 595–604 (2006).
  • Pitarresi G , CraparoEF, PalumboFS, CarlisiB, GiammonaG: Composite nanoparticles based on hyaluronic acid chemically crosslinked with α, β-polyaspartylhydrazide.Biomacromolecules.8, 1890–1898 (2007).
  • Marha R , ZollerM: CD44 in cancer progression: Adhesion, migration and growth regulation.J. Mol. Histol.35, 211–231 (2004).
  • Dimeo C , PanzaL, CaptitaniDet al.: Hyaluronan as carrier of carboranes for tumor targeting in boron neutron capture therapy.Biomacromolecules8, 552–559 (2007).
  • Varghese OP , SunW, HilbornJ, OssipovDA: In situ cross-linkable high molecular weight hyaluronan–bisphophonate conjugate for localized delivery and cell-specific targeting: a hydrogel linked prodrug approach.J. Am. Chem. Soc.131, 8781–8783 (2009).
  • Kelly K , AlencarH, FunovicsM, MahmoodU, WeisslederR: Detection of invasive colon cancer using a novel, targeted, library-derived fluorescent peptide.Cancer Res.64, 6247–6251 (2004).
  • Garg A , TisdaleAW, HaidariE, KokkoliE: Targeting colon cancer cells using PEGylated liposomes modified with a fibronectin-mimetic peptide.Int. J. Pharm.366, 201–210 (2009).
  • Demirgoz D , GargA, KokkoliE: Pr-b targeted PEGylated liposomes for prostate cancer therapy.Langmuir24, 13518–13524 (2008).
  • Chittasupho C , Xie S-X, Baoum A, Yakovleva T, Siahaan TJ, Berkland CJ: ICAM-1 targeting of doxorubicin-loaded PLGA nanoparticles to lung epithelial cells. Eur. J. Pharm. Sci.37, 141–150 (2009).
  • Veiseh O , SunC, GunnJet al.: Optical and MRI multifunctional nanoprobe for targeting gliomas.Nano Lett.5, 1003–1008 (2005).
  • Veiseh O , KievitFM, GunnJW, RatnerBD, ZhangM: A ligand-mediated nanovector for targeted gene delivery and transfection in cancer cells.Biomaterials30, 649–657 (2009).
  • Banzato A , RondinaM, Melendez-AlafortLet al.: Biodistribution of a paclitaxel–hyaluronan bioconjugate.Nucl. Med. Biol.36, 525–533 (2009).
  • Krenning EP , BakkerWH, BreemanWAet al.: Localization of endocrine-related tumours with radioiodinated analogue of somatostatin.Lancet1, 242–244 (1989).
  • Kostenich G , LivnahN, BonaseraTAet al.: Targeting small-cell lung cancer with novel fluorescent analogs of somatostatin.Lung Cancer50, 319–328 (2005).
  • Reubi JC : Peptide receptors as molecular targets for cancer diagnosis and therapy.Endo. Rev.24(4), 389–427 (2003).
  • Dasgupta P : Somatostatin analogs: Multiple roles in cellular proliferation, neoplasia, and angiogenesis.Pharm. Therap.102, 61–85 (2004).
  • Kostenich G , Oron-HermanM, KimelS, LivnahN, TsarftyI, OrensteinA: Diagnostic targeting of colon cancer using a novel fluorescent somatostatin conjugate in a mouse xenograft model.Int. J. Cancer122, 2044–2049 (2008).
  • Shen H , HuD, DuJet al.: Paclitaxel–octreotide conjugates in tumor growth inhibition of a459 human non-small cell lung cancer xenografted into nude mice.Eur. J. Pharm.601, 23–29 (2009).
  • Li XB , DuXK, HuoTL, LiuX, ZhangS: Specific targeting of breast tumor by octreotide-conjugated superparamagnetic iron oxide particles using a clinical 3.0-tesla magnetic resonance scanner.Acta Radiol.50, 583–594 (2009).
  • Gozes I : VIP, from gene to behaviour and back: summarizing my 25 years of research.J. Mol. Neurosci.36, 115–124 (2008).
  • Zhang K , AruvaMR, ShanthlyNet al.: Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating peptide (PACAP) receptor specific peptide analogs for PET imaging of breast cancer: in vitro/in vivo evaluation.Regul. Pept.144, 91–100 (2007).
  • Onyukel H , JeongJH, RubinsteinI: Nanomicellar paclixatel increases cytotoxicity of multidrug resistant breast cancer cells.Cancer Lett.274, 327–330 (2009).
  • Rubinstein I , SoosI, OnyukelH: Intracellular delivery of VIP-grafted sterically stabilized phospholipid mixed nanomicelles in human breast cancer cells.Chem. Biol. Interact.171, 190–194 (2008).
  • Moody TW , ManteySA, FuselierJA, CoyDH, JensenRT: Vasoactive intestinal peptide–camptothecin conjugates inhibit the proliferation of breast cancer cells.Peptides28, 1883–1890 (2007).
  • Dharap SS , WangY, ChandnaPet al.: Tumor-specific targeting of an anticancer drug delivery system by LHRH peptide.Proc. Natl Acad. Sci. USA102, 12962–12967 (2005).
  • Zhou J , LeuschnerC, KumarC, HormesJ, SoboyejoWO: A TEM study of functionalized magnetic nanoparticles targeting breast cancer cells.Mater. Sci. Eng. C.26, 1451–1455 (2005).
  • Kim SH , JeongJH, LeeSH, KimSW, ParkTG: LHRH receptor-mediated delivery of siRNA using polyelectrolyte complex micelles self-assembled from siRNA–PEG–LHRH conjugate and PEI.Bioconjug. Chem.19, 2156–2162 (2008).
  • Tietze LF , PankninO, MajorF, KrewerB: Synthesis of a novel pentagastrin-drug conjugate for a targeted tumor therapy.Chem. Eur. J.14, 2811–2818 (2008).
  • Ma LX , YuP, VeerendraBet al.: In vitro and in vivo evaluation of Alexa Fluor 680-bombesin [7–14] NH2 peptide conjugate, a high affinity fluorescent probe with high selectivity for the gastrin-releasing peptide receptor.Mol. Imaging6, 171–180 (2007).
  • Liu Z , YanY, LiuS, WangF, ChenX: 18F, 64Cu and 68Ga labeled RGD–bombesin heteropeptides for pet imaging of breast cancer.Bioconjug. Chem.20, 1016–1025 (2009).
  • Huang CM , WeuYT, ChenSY: Targeting delivery of paclitaxel into tumor cells via somatostatin receptor endocytosis.Chem. Biol.7, 453–461 (2000).
  • Dagar S , KrishnadasA, RubinsteinI, BlendMJ, OnyukelH: VIP grafted sterically stabilized liposomes or targeted imaging of breast cancer: in vivo studies.J. Control. Release91, 123–133 (2003).
  • Dubuc C , LangloisR, BenardFet al.: Targeting gastrin-releasing peptide receptors of prostate cancer cells for photodynamic therapy with a phthalocyanine–bombesin conjugate.Bioorg. Med. Chem. Lett.18, 2424–2427 (2008).
  • Kim DK , MikhaylovaM, WangFHet al.: Starch-coated superparamagnetic nanoparticles as MR contrast agents.Chem. Mater.15, 4343–4351 (2003).
  • Neuwelt EA , VarallyeyP, BagoAG, MuldoonLL, NesbitG, NixonR: Imaging of iron oxide nanoparticles by MR and light microscopy in patients with malignant brain tumours.Neuropathol. Appl. Neurobio.30(5), 456–471 (2004).
  • Zhang Y , Zhang Y-F, Bryant J, Charles A, Boado R, Pardridge WM: Intravenous RNA interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in intracranial brain cancer. Clin. Cancer Res.10, 3667–3677 (2004).
  • Vinogradov SV , BatrakovaEV, KabanovV: Nanogels for oligonucleotide delivery to the brain.Bioconjug. Chem.15, 50–60 (2004).
  • Huang R , KeW, LiuY, JiangC, PeiY: The use of lactoferrin as a ligand for targeting the polyamidoamine-based gene delivery system to the brain.Biomaterials29, 238–246 (2008).
  • Peer D , KarpJM, HongS, FarohzardOC, MargalitR, LangerR: Nanocarriers as an emerging platform for cancer therapy.Nat. Nanotechnol.2, 751–760 (2007).
  • Delves PJ , MartinSJ, BurtonDR, RoittIM: Roitt‘s Essential Immunology (11th Edition). Delves PJ, Martin SJ, Burton DR, Roitt IM (Eds). Wiley-Blackwell Blackwell Publishing, MA, USA (2006).
  • Martin AL , LiB, GilliesER: Surface functionalization of nanomaterials with dendritic groups: toward enhanced binding to biological targets.J. Am. Chem. Soc.131, 734–741 (2009).
  • Bjornerud A , JohanssonL: The utility of superparamagnetic contrast agents in MRI: theoretical consideration and applications in the cardiovascular system.NMR Biomed.17, 465–477 (2004).
  • Neuberger T , SchopfB, HofmannH, HofmannM, Von Rechenberg B: Superparamagnetic nanoparticle for biomedical applications: possibility and limitations of a new drug delivery system. J. Magn. Magn. Mater.293, 483–496 (2005).
  • De Bondt RB , NelemansPJ, HofmanPAMet al.: Detection of lymph node metastases in head and neck cancer: a meta-analysis comparing US, USgFNAC, CT and MR imaging.Eur. J. Radiol.64, 266–272 (2007).
  • Gneveckow U , JordanA, ScholzRet al.: Description and characterization of the novel hyperthermia- and thermoablation-system MFH 300F for clinical magnetic fluid hyperthermia.Med. Phys.31(1444–1451), (2004).
  • Ito A , KugaY, HondaHet al.: Magnetite nanoparticle-loaded anti-HER2 immunoliposomes for combination of antibody therapy with hyperthermia.Cancer Lett.212, 161–175 (2004).
  • Hilger I , HergtR, KaiserWA: Towards breast cancer treatment by magnetic heating.J. Magn. Magn. Mater.293, 314–319 (2005).
  • Pankhurst QA , ThanhNKT, JoneST, DobsonJ: Progress in applications of magnetic nanoparticles in biomedicine.J. Phys. D.42, 2244001–22416 (2009)
  • Widder KJ , SenyiAE: Magnetic microspheres: a model system for site specific drug delivery in vivo.Proc. Soc. Exp. Biol. Med.58, 141–146 (1978).
  • Senyi AE , WidderKJ, CzerlinskiC: Magnetic guidance of drug carrying microspheres.J. Appl. Phys.49, 3578–3583 (1978).
  • Widder KJ , MorrisRM, PooreGA, HowardDP, SenyiAE: Selective targeting of magnetic albumin microspheres containing low-dose doxorubicin-total remission in yoshida sarcoma-bearing rats.Eur. J. Cancer. Clin. Oncol.19, 135–139 (1983).
  • Alexiou C , ArnoldW, KleinRJet al.: Locoregional cancer treatment with magnetic drug targeting.Cancer Res.60, 6641–6648 (2000).
  • Lemke AJ , Von Pilsach M, Lubbe AS, Bergemann C, Riess H, Felix R: MRI after magnetic drug targeting in patients with advanced solid malignant tumors. Euro. Radiol.14, 1949–1955 (2004).
  • Dobson J : Magnetic nanoparticle-based targeting for drug and gene delivery.Nanomedicine1, 31–37 (2006).
  • Dobson J : Magnetic nanoparticles for drug delivery.Drug Dev. Res.67, 55–60 (2006).
  • Rosengart AJ , KaminskiMD, ChenH, CavinessPI, EbnerAD: Magnetizable implants and functionalized magnetic carriers: a novel approach for noninvasive yet targeted drug delivery.J. Magn. Magn. Mater.293, 633–638 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.