7,522
Views
3
CrossRef citations to date
0
Altmetric
Review

Engineering Hydrogels as Extracellular Matrix Mimics

, , , &
Pages 469-484 | Published online: 16 Apr 2010

Bibliography

  • Ni Y , ChenR: Extracellular recombinant protein production from Escherichia coli.Biotechnol. Lett.31(11), 1661–1670 (2009).
  • Porro D , SauerM, BranduardiP, MattanovichD: Recombinant protein production in yeasts.Mol. Biotechnol.31(3), 245–259 (2005).
  • Zhang X , ReaganMR, KaplanDL: Electrospun silk biomaterial scaffolds for regenerative medicine.Adv. Drug Deliv. Rev.61(12), 988–1006 (2009).
  • Baker EL , BonnecazeRT, ZamanMH: Extracellular matrix stiffness and architecture govern intracellular rheology in cancer.Biophys. J.97(4), 1013–1021 (2009).
  • Hong H , McCulloughCM, StegemannJP: The role of ERK signaling in protein hydrogel remodeling by vascular smooth muscle cells.Biomaterials28(26), 3824–3833 (2007).
  • Tibbitt MW , AnsethKS: Hydrogels as extracellular matrix mimics for 3D cell culture.Biotechnol. Bioeng.103, 655–663 (2009).
  • Du Y , LoE, AliS, KhademhosseiniA: Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs.Proc. Nat. Acad. Sci. USA105(28), 9522–9527 (2008).
  • Ling Y , RubinJ, DengYet al.: A cell-laden microfluidic hydrogel.Lab Chip7(6), 756–762 (2007).
  • Liu Tsang V , ChenAA, ChoLMet al.: Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels.FASEB J.21(3), 790–801 (2007).
  • Khademhosseini A , LangerR: Microengineered hydrogels for tissue engineering.Biomaterials28(34), 5087–5092 (2007).
  • Lutolf MP : Integration column: artificial ECM: expanding the cell biology toolbox in 3D.Integr. Biol.1, 235–241 (2009).
  • Baroli B : Hydrogels for tissue engineering and delivery of tissue-inducing substances.J. Pharm. Sci.96(9), 2197–2223 (2007).
  • Federovich NE , AlblasJ, DewijnJR, HenninkWE, VerboutAJ, DhertWJA: Hydrogels as extracellular matrices for skeletal tissue engineering: state-of-the-art and novel application in organ printing.Tissue Eng.13, 1905–1925 (2007).
  • Jabbarzadeh E , StarnesT, KhanYMet al.: Induction of angiogenesis in tissue-engineered scaffolds designed for bone repair: a combined gene therapy-cell transplantation approach.Proc. Natl Acad. Sci. USA105(32), 11099–11104 (2008).
  • Jay SM , SaltzmanWM: Shining light on a new class of hydrogels.Nat. Biotechnol.27(6), 543–544 (2009).
  • Peppas NA , HiltJZ, KhademhosseiniA, LangerR: Hydrogels in biology and medicine: from molecular principles to bionanotechnology.Adv. Mater.18, 1345 (2006).
  • Burdick JA , Vunjak-NovakovicG: Engineered microenvironments for controlled stem cell differentiation.Tissue Eng. Part A15(2), 205–219 (2009).
  • Mano JF , SilvaGA, AzevedoHSet al.: Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends.J. R. Soc. Interface4, 999–1030 (2007).
  • Seunarine K , GadegaardN, TormenM, MeredithDO, RiehleMO, WilkinsonCD: 3D polymer scaffolds for tissue engineering.Nanomedicine (Lond.)1(3), 281–296 (2006).
  • Kopecek J : Hydrogel biomaterials: a smart future?Biomaterials28(34), 5185–5192 (2007).
  • Saunders BR , LaajamN, DalyE, TeowS, HuX, SteptoR: Microgels: from responsive polymer colloids to biomaterials.Adv. Colloid. Interface Sci.147–148, 251–262 (2009).
  • Lee WH , ShinSJ, ParkY, Lee S-H: Synthesis of cell-laden alginate hollow fibers using microfluidic chips and microvascularized tissue-engineering applications. Small5(11), 1264–1268 (2009).
  • Seidlits SK , LeeJY, SchmidtCE: Nanostructured scaffolds for neural applications.Nanomedicine (Lond.)3(2), 183–199 (2008).
  • Rodriguez-Cabello JC , PrietoS, AriasFJ, RegueraJ, RibeiroA: Nanobiotechnological approach to engineered biomaterial design: the example of elastin-like polymers.Nanomedicine (Lond.)1(3), 267–280 (2006).
  • Madurantakam PA , CostCP, SimpsonDG, BowlinGL: Science of nanofibrous scaffold fabrication: strategies for next generation tissue-engineering scaffolds.Nanomedicine (Lond.)4(2), 193–206 (2009).
  • Slaughter BV , KhurshidSS, FisherOZ, KhademhosseiniA, PeppasNA: Hydrogels in regenerative medicine.Adv. Mater.21, 3307–3329 (2009).
  • Kim BS , MooneyDJ: Development of biocompatible synthetic extracellular matrices for tissue engineering.Trends Biotechnol.16(5), 224–230 (1998).
  • Schneider GB , EnglishA, AbrahamM, ZahariasR, StanfordC, KellerJ: The effect of hydrogel charge density on cell attachment.Biomaterials25(15), 3023–3028 (2004).
  • Ford MC , BertramJP, HynesSRet al.: A macroporous hydrogel for the coculture of neural progenitor and endothelial cells to form functional vascular networks in vivo.Proc. Natl Acad. Sci. USA103(8), 2512–2517 (2006).
  • Dadsetan M , HefferanTE, SzatkowskiJPet al.: Effect of hydrogel porosity on marrow stromal cell phenotypic expression.Biomaterials29(14), 2193–2202 (2008).
  • Bryant SJ , CuyJL, HauchKD, RatnerBD: Photo-patterning of porous hydrogels for tissue engineering.Biomaterials28(19), 2978–2986 (2007).
  • Singh M , BerklandC, DetamoreMS: Strategies and applications for incorporating physical and chemical signal gradients in tissue engineering.Tissue Eng. Part B Rev.14(4), 341–366 (2008).
  • Anseth KS , BowmanCN, Brannon-PeppasL: Mechanical properties of hydrogels and their experimental determination.Biomaterials17, 1647–1657 (1996).
  • Wenger MP , BozecL, HortonMA, MesquidaP: Mechanical properties of collagen fibrils.Biophys. J.93(4), 1255–1263 (2007).
  • Choi NW , CabodiM, HeldB, GleghornJP, BonassarLJ, StroockAD: Microfluidic scaffolds for tissue engineering.Nat. Mater.6(11), 908–915 (2007).
  • Tu C , CalQ, YangJet al.: The fabrication and characterization of poly(lactic acid) scaffolds for tissue engineering by improved solidliquid phase separation.Polym. Adv. Technol.14, 565–573 (2003).
  • Nicodemus GD , BryantSJ: Cell encapsulation in biodegradable hydrogels for tissue engineering applications.Tissue Eng. Part B Rev.14(2), 149–165 (2008).
  • Mcguigan AP , BruzewiczDA, GlavanA, ButteM, WhitesidesGM: Cell encapsulation in sub-mm sized gel modules using replica molding.PLoS ONE3, e2258 (2008).
  • Tan W-H , Takeuchi S: Monodisperse alginate hydrogel microbeads for cell encapsulation. Adv. Mater.19, 2696–2701 (2007).
  • Liu J , GaoD, LiHF, LinJM: Controlled photopolymerization of hydrogel microstructures inside microchannels for bioassays.Lab Chip9(9), 1301–1305 (2009).
  • Gao D , XuH, PhilbertMA, KopelmanR: Bio-eliminable nano-hydrogels for drug delivery.Nano Lett.8, 3320–3324 (2008).
  • Qiu Y , ParkK: Environment-sensitive hydrogels for drug delivery.Adv. Drug Deliv. Rev.53(3), 321–339 (2001).
  • Soppimath KS , AminabhaviTM, DaveAM, KumbarSG, RudzinskiWE: Stimulus-responsive ‘smart’ hydrogels as novel drug delivery systems.Drug Dev. Ind. Pharm.28, 957–974 (2002).
  • Kretlow JD , KloudaL, MikosAG: Injectable matrices and scaffolds for drug delivery in tissue engineering.Adv. Drug Deliv. Rev.59(4–5), 263–273 (2007).
  • Bettinger CJ , WeinbergEJ, KuligKMet al.: Three-dimensional microfluidic tissue-engineering scaffolds using a flexible biodegradable polymer.Adv. Mater.18(2), 165–169 (2005).
  • Burdick JA : Cellular control in two clicks.Nature460, 469–470 (2009).
  • Rivest C , MorrisonDWG, NiBet al.: Microscale hydrogels for medicine and biology: synthesis, characterisation and applications.J. Mechanics Materials Structures2, 1103–1119 (2007).
  • Gillette BM , JensenJA, TangBet al.: In situ collagen assembly for integrating microfabricated three-dimensional cell-seeded matrices.Nat. Mater.7(8), 636–640 (2008).
  • Sahoo S , ChungC, KhetanS, BurdickJA: Hydrolytically degradable hyaluronic acid hydrogels with controlled temporal structures.Biomacromolecules9(4), 1088–1092 (2008).
  • Li Q , WilliamsCG, SunDD, WangJ, LeongK, ElisseeffJH: Photocrosslinkable polysaccharides based on chondroitin sulfate.J. Biomed. Mater. Res. A68(1), 28–33 (2004).
  • Eyrich D , BrandlF, AppelBet al.: Long-term stable fibrin gels for cartilage engineering.Biomaterials28(1), 55–65 (2007).
  • Fukuda J , KhademhosseiniA, YehJet al.: Micropatterned cell co-cultures using layer-by-layer deposition of extracellular matrix components.Biomaterials27, 1479–1486 (2006).
  • Smidsrod O , Skjak-BraekG: Alginate as immobilization matrix for cells.Trends Biotechnol.8, 71–78 (1990).
  • Azab AK , OrkinB, DovinerVet al.: Crosslinked chitosan implants as potential degradable devices for brachytherapy: in vitro and in vivo analysis.J. Control Release111, 281–289 (2006).
  • Kim HJ , KimUJ, KimHSet al.: Bone tissue engineering with premineralized silk scaffolds.Bone42(6), 1226–1234 (2008).
  • Black LD , AllenPG, MorrisSM, StonePJ, SukiB: Mechanical and failure properties of extracellular matrix sheets as a function of structural protein composition.Biophys. J.94(5), 1916–1929 (2008).
  • Bolland F , KorossisS, WilshawSPet al.: Development and characterization of a full-thickness acellular porcine bladder matrix for tissue engineering.Biomaterials28, 1061–1070 (2007).
  • Schenke-Layland K , VasilevskiO, OpitzFet al.: Impact of decellularization of xenogeneic tissue on extracellular matrix integrity for tissue engineering of heart valves.J. Struct. Biol.143(3), 201–208 (2003).
  • Uchimura E , SawaY, TaketaniSet al.: Novel method of preparing acellular cardiovascular grafts by decellularization with poly(ethylene glycol).J. Biomed. Mater. Res. A67(3), 834–837 (2003).
  • Chen RN , HoHO, TsaiYT, SheuMT: Process development of an acellular dermal matrix (ADM) for biomedical applications.Biomaterials25(13), 2679–2686 (2004).
  • Lin P , ChanWC, BadylakSF, BhatiaSN: Assessing porcine liver-derived biomatrix for hepatic tissue engineering.Tissue Eng.10(7–8), 1046–1053 (2004).
  • Park Y , LutolfMP, HubbellJA, HunzikerEB, WongM: Bovine primary chondrocyte culture in synthetic matrix metalloproteinase-sensitive poly(ethylene glycol)-based hydrogels as a scaffold for cartilage repair.Tissue Eng.10(3–4), 515–522 (2004).
  • Hiraoka Y , KimuraY, UedaH, TabataY: Fabrication and biocompatibility of collagen sponge reinforced with poly(glycolic acid) fiber.Tissue Eng.9(6), 1101–1112 (2003).
  • Uematsu K , HattoriK, IshimotoYet al.: Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly-lacticglycolic acid (PLGA) scaffold.Biomaterials26, 4273–4279 (2005).
  • Chen GP , SatoT, UshidaT, OchiaiN, TateishiT: Tissue engineering of cartilage using a hybrid scaffold of synthetic polymer and collagen.Tissue Eng.10, 323–330 (2004).
  • Savina IN , DainiakM, JungvidH, MikhalovskySV, GalaevIY: Biomimetic macroporous hydrogels: protein ligand distribution and cell response to the ligand architecture in the scaffold.J. Biomater. Sci.20(12), 1781–1795 (2009).
  • Teo WE , HeW, RamakrishnaS: Electrospun scaffold tailored for tissue-specific extracellular matrix.Biotechnol. J.1(9), 918–929 (2006).
  • Hasirci V , KenarH: Novel surface patterning approaches for tissue engineering and their effect on cell behavior.Nanomedicine (Lond.)1(1), 73–90 (2006).
  • Ahearne M , YangY, Liu K-K: Mechanical characterisation of hydrogels for tissue engineering applications. Topics Tissue Eng.4, 1–16 (2008).
  • Ahearne M , YangY, El Haj AJ, Then KY, Liu KK: Characterizing the viscoelastic properties of thin hydrogel-based constructs for tissue engineering applications. J. R. Soc. Interface2, 455–463 (2005).
  • Drury JL , MooneyDJ: Hydrogels for tissue engineering: scaffold design variables and applications.Biomaterials24(24), 4337–4351 (2003).
  • Awad HA , WickhamMQ, LeddyHA, GimbleJM, GuilakF: Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds.Biomaterials25(16), 3211–3222 (2004).
  • Ahearne M , LiuKK, YangY: Dual-Camera Spherical Indentation System for Examining the Mechanical Characteristics of Hydrogels. Springer-Verlag, Berlin, Germany, 2011–2014 (2009).
  • Ma PX : Biomimetic materials for tissue engineering.Adv. Drug Deliv. Rev.60, 184–198 (2008).
  • Salvay DM , SheaLD: Inductive tissue engineering with protein and DNA-releasing scaffolds.Mol. Biosyst.2(1), 36–48 (2006).
  • Deforest CA , PolizzottiBD, AnsethKS: Sequential click reactions for synthesizing and patterning three-dimensional cell microenvironments.Nat. Mater.8(8), 659–664 (2009).
  • Atala A : Tissue engineering, stem cells and cloning: current concepts and changing trends.Expert Opin. Biol. Ther.5(7), 879–892 (2005).
  • Atala A , BauerSB, SokerS, YooJJ, RetikAB: Tissue-engineered autologous bladders for patients needing cystoplasty.Lancet367, 1241–1246 (2006).
  • Langer R , VacantiJP: Tissue engineering.Science260(5110), 920–926 (1993).
  • Levenberg S , HuangNF, LavikE, RogersAB, Itskovitz-EldorJ, LangerR: Differentiation of human embryonic stem cells on three-dimensional polymer scaffolds.Proc. Natl Acad. Sci. USA100(22), 12741–12746 (2003).
  • Griffith LG , NaughtonG: Tissue engineering – current challenges and expanding opportunities.Science295(5557), 1009–1014 (2002).
  • Macchiarini P , JungebluthP, GoTet al.: Clinical transplantation of a tissue-engineered airway.Lancet372(9655), 2023–2030 (2008).
  • Sahiner N , JhaAK, NguyenD, JiaX: Fabrication and characterization of cross-linkable hydrogel particles based on hyaluronic acid: potential application in vocal fold regeneration.J. Biomater. Sci.19(2), 223–243 (2008).
  • Boland T , MironovV, GutowskaA, RothEA, MarkwaldRR: Cell and organ printing 2: fusion of cell aggregates in three-dimensional gels.Anat. Rec. A Discov. Mol. Cell. Evol. Biol.272(2), 497–502 (2003).
  • Jakab K , NorotteC, DamonBet al.: Tissue engineering by self-assembly of cells printed into topologically defined structures.Tissue Eng.14(3), 413–421 (2008).
  • Burg T , GroffR, BurgK, HillM, BolandT: Systems engineering challenges in inkjet biofabrication. In: SoutheastCon, 2007. Proceedings IEEE (2007).
  • Xu T , JinJ, GregoryC, HickmanJJ, BolandT: Inkjet printing of viable mammalian cells.Biomaterials26(1), 93–99 (2005).
  • Fedorovich NE , AlblasJ, De Wijn JR, Hennink WE, Verbout AJ, Dhert WJ: Hydrogels as extracellular matrices for skeletal tissue engineering: state-of-the-art and novel application in organ printing. Tissue Eng.13(8), 1905–1925 (2007).
  • Varghese D , DeshpandeM, XUT, KesariP, OhriS, BolandT: Advances in tissue engineering: cell printing.J. Thorac. Cardiovasc. Surg.129(2), 470–472 (2005).
  • Sachlos E , CzernuszkaJT: Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds.Eur. Cell. Mater.5, 29–39 (2003).
  • Hutmacher DW , SittingerM, RisbudMV: Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems.Trends Biotechnol.22(7), 354–362 (2004).
  • Leong KF , CheahCM, ChuaCK: Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs.Biomaterials24, 2363–2378 (2003).
  • Sun W , LalP: Recent development on computer aided tissue engineering – a review.Comput. Methods Programs Biomed.67, 85–103 (2002).
  • Landers R , HubnerU, SchmelzeisenR, MulhauptR: Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering.Biomaterials23(23), 4437–4447 (2002).
  • Yang S , LeongKF, DUZ, ChuaCK: The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques.Tissue Eng.8, 1–11 (2002).
  • Khademhosseini A , LangerR, BorensteinJ, VacantiJP: Microscale technologies for tissue engineering and biology.Proc. Natl Acad. Sci. USA103(8), 2480–2487 (2006).
  • Glicklis R , ShapiroL, AgbariaR, MerchukJC, CohenS: Hepatocyte behavior within three-dimensional porous alginate scaffolds.Biotechnol. Bioeng.67(3), 344–353 (2000).
  • Jakab K , DamonB, NeaguA, KachurinA, ForgacsG: Three-dimensional tissue constructs built by bioprinting.Biorheology43(3–4), 509–513 (2006).
  • Atala A , BauerSB, SokerS, YooJJ, RetikAB: Tissue-engineered autologous bladders for patients needing cystoplasty.Lancet367(9518), 1241–1246 (2006).
  • Nuttelman CR , TripodiMC, AnsethKS: Synthetic hydrogel niches that promote HMSC viability.Matrix Biol.24, 208–218 (2005).
  • Guilak F , CohenDM, EstesBT, GimbleJM, LiedtkeW, ChenCS: Control of stem cell fate by physical interactions with the extracellular matrix.Cell. Stem. Cell.5(1), 17–26 (2009).
  • Zhang X , WangX, KeshavV, JohanasJT, LeiskGG, KaplanDL: Dynamic culture conditions to generate silk-based tissue-engineered vascular grafts.Biomaterials30(19), 3213–3223 (2009).
  • Mauney JR , SjostormS, BlumbergJet al.: Mechanical stimulation promotes osteogenic differentiation of human bone marrow stromal cells on 3-D partially demineralized bone scaffolds in vitro.Calcif. Tissue Int.74(5), 458–468 (2004).
  • Boucard N , VitonC, AgayDet al.: The use of physical hydrogels of chitosan for skin regeneration following third-degree burns.Biomaterials28, 3478–3488 (2007).
  • Fan HB , HuYY, ZhangCLet al.: Cartilage regeneration using mesenchymal stem cells and a PLGA-gelatin/chondroitin/hyaluronate hybrid scaffold.Biomaterials27, 4573–4580 (2006).
  • McGuigan AP , SeftonMV: Modular tissue engineering: fabrication of a gelatin-based construct.J. Tissue Eng. Regen. Med.1(2), 136–145 (2007).
  • Moon S , HasanSK, SongYSet al.: Layer by layer three-dimensional tissue epitaxy by cell-laden hydrogel droplets.Tissue Eng. Part C Methods16(1), 157–166 (2010).
  • Mcguigan AP , LeungB, SeftonMV: Fabrication of cell-containing gel modules to assemble modular tissue-engineered constructs [corrected].Nat. Prtotoc.1(6), 2963–2969 (2006).
  • Nomi M , AtalaA, CoppiPD, SokerS: Principles of neovascularization for tissue engineering.Mol. Aspects Med.23, 463–483 (2002).
  • Bhatia SN : Customizing cellular microenvironments for hepatic tissue engineering.Abstr. Pap. Am. Chem. Soc.221, U127 (2001).
  • Flaim CJ , ChienS, BhatiaSN: An extracellular matrix microarray for probing cellular differentiation.Nat. Methods2(2), 119–125 (2005).
  • Anderson DG , LevenbergS, LangerR: Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells.Nat. Biotechnol.22(7), 863–866 (2004).
  • Nelson CM , TienJ: Microstructured extracellular matrices in tissue engineering and development.Curr. Opin. Biotechnol.17, 518–523 (2006).
  • Nelson CM , VanduijnMM, InmanJL, FletcherDA, BissellMJ: Tissue geometry determines sites of mammary branching morphogenesis in organotypic cultures.Science314, 298–300 (2006).
  • Marenzana M , KellyDJ, PrendergastPJ, BrownRA: A collagen-based interface construct for the assessment of cell-dependent mechanical integration of tissue surfaces.Cell Tissue Res.327, 293–300 (2007).
  • Lee CS : Integration of layered chondrocyte-seeded alginate hydrogel scaffolds.Biomaterials28, 2987–2993 (2007).
  • Mikos AG : Engineering complex tissues.Tissue Eng.12, 3307–3339 (2006).
  • Dendukuri D , PregibonDC, CollinsJ, HattonTA, DoylePS: Continuous-flow lithography for high-throughput microparticle synthesis.Nat. Mater.5(5), 365–369 (2006).
  • Whitesides GM , OstuniE, TakayamaS, JiangX, IngberDE: Soft lithography in biology and biochemistry.Ann. Rev. Biomed. Eng.3, 335–373 (2001).
  • Tumarkin E , KumachevaE: Microfluidic generation of microgels from synthetic and natural polymers.Chem. Soc. Rev.38(8), 2161–2168 (2009).
  • Xu F , DattaP, WangHet al.: Polymer microfluidic chips with integrated waveguides for reading microarrays.Analyt. Chem.79(23), 9007–9013 (2007).
  • Godin J , ChenCH, ChoSH, QiaoW, TsaiF, LoYH: Microfluidics and photonics for bio-system-on-a-chip: a review of advancements in technology towards a microfluidic flow cytometry chip.J. Biophotonics1(5), 355–376 (2008).
  • Li Z , PsaltisD: Optofluidic dye lasers.Microfluid. Nanofluidics4, 145 (2008).
  • Kim YG , MoonS, KuritzkesDR, DemirciU: Quantum dot-based HIV capture and imaging in a microfluidic channel.Biosens. Bioelectron.25(1), 253–258 (2009).
  • Moon SJ , LinR, DemirciU: CD4+ T-lymphocyte capture using a disposable microfluidic chip for HIV.J. Vis. Exp.8, 315 (2007).
  • Demirci U : Using micro-electro-mechanical systems (MEMS) to develop diagnostic tools.J. Vis. Exp.8, 314 (2007).
  • Ozcan A , DemirciU: Ultra wide-field lens-free monitoring of cells on-chip.Lab. Chip8(1), 98–106 (2008).
  • Cheng X , IrimiaD, DixonMet al.: A microchip approach for practical label-free CD4+ T-cell counting of HIV-infected subjects in resource-poor settings.J. Acquir. Immun. Syndr.45(3), 257–261 (2007).
  • Cheng X , IrimiaD, DixonMet al.: A microfluidic device for practical label-free CD4(+) T cell counting of HIV-infected subjects.Lab. Chip7(2), 170–178 (2007).
  • Moon S , KelesHO, OzcanAet al.: Integrating microfluidics and lensless imaging for point-of-care testing.Biosens. Bioelectron.24(11), 3208–3214 (2009).
  • Yeh J , LingY, KarpJMet al.: Micromolding of shape-controlled, harvestable cell-laden hydrogels.Biomaterials27(31), 5391–5398 (2006).
  • Khademhosseini A , EngG, YehJet al.: Micromolding of photocrosslinkable hyaluronic acid for cell encapsulation and entrapment.J. Biomed. Mater. Res. A79(3), 522–532 (2006).
  • Dang TT , XuQ, BratlieKMet al.: Microfabrication of homogenous, asymmetric cell-laden hydrogel capsules.Biomaterials30, 6896–6902 (2009).
  • Lam CXF , MoXM, TeohSH, HutmacherDW: Scaffold development using 3D printing with a starch-based polymer.Mater. Sci. Eng. C Biomim. Supramol. Syst.20, 49–56 (2002).
  • Pfister A , LandersR, LaibA, HubnerU, SchmelzeisenR, MulhauptR: Biofunctional rapid prototyping for tissue-engineering applications: 3D bioplotting versus 3D printing.J. Polym. Sci. Part A Polym. Chem.42, 624–638 (2004).
  • Boland T , XuT, DamonB, CuiX: Application of inkjet printing to tissue engineering.Biotechnol. J.1(9), 910–917 (2006).
  • Mironov V , BolandT, TruskTet al.: Organ printing: computer-aided jet-based 3D tissue engineering.Trends Biotechnol.21(4), 157–161 (2003).
  • Nahmias Y , BerthiaumeF, YarmushML: Integration of technologies for hepatic tissue engineering.Adv. Biochem. Eng. Biotechnol.103, 309–329 (2007).
  • Fidkowski C , Kaazempur-MofradMR, BorensteinJ, VacantiJP, LangerR, WangY: Endothelialized microvasculature based on a biodegradable elastomer.Tissue Eng.11(1–2), 302–309 (2005).
  • Mcguigan AP , SeftonMV: Vascularized organoid engineered by modular assembly enables blood perfusion.Proc. Natl Acad. Sci. USA103, 11461–11466 (2006).
  • McGuigan AP , SeftonMV: Design and fabrication of sub-mm-sized modules containing encapsulated cells for modular tissue engineering.Tissue Eng.13(5), 1069–1078 (2007).
  • Panda P , AliS, LoEet al.: Stop-flow lithography to generate cell-laden microgel particles.Lab. Chip8(7), 1056–1061 (2008).
  • Mcguigan AP , SeftonMV: Vascularized organoid engineered by modular assembly enables blood perfusion.Proc. Natl Acad. Sci. USA103(31), 11461–11466 (2006).
  • Mcguigan AP , SeftonMV: Design criteria for a modular tissue-engineered construct.Tissue Eng.13(5), 1079–1089 (2007).
  • Doraiswamy A , NarayanRJ, HarrisML, QadriSB, ModiR, ChriseyDB: Laser microfabrication of hydroxyapatite-osteoblast-like cell composites.J. Biomed. Mater. Res. A80A(3), 635–643 (2006).
  • Colton CK : Implantable biohybrid artificial organs.Cell Transplant4(4), 415–436 (1995).
  • Nahmias Y , KramvisI, BarbeL, CasaliM, BerthiaumeF, YarmushML: A novel formulation of oxygen-carrying matrix enhances liver-specific function of cultured hepatocytes.FASEB J.20, 2531–2533 (2006).
  • Kidambi S , YarmushRS, NovikE, ChaoP, YarmushML, NahmiasY: Oxygen-mediated enhancement of primary hepatocyte metabolism, functional polarization, gene expression, and drug clearance.Proc. Natl Acad. Sci. USA106(37), 15714–15719 (2009).
  • Xu T , GregoryCA, MolnarPet al.: Viability and electrophysiology of neural cell structures generated by the inkjet printing method.Biomaterials27(19), 3580–3588 (2006).
  • Franzesi GT , NiB, LingY, KhademhosseiniA: A controlled-release strategy for the generation of cross-linked hydrogel microstructures.J. Am. Chem. Soc.128(47), 15064–15065 (2006).
  • Lee JN , ParkC, WhitesidesGM: Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices.Analyt. Chem.75(23), 6544–6554 (2003).
  • Weibel DB , DiluzioWR, WhitesidesGM: Microfabrication meets microbiology.Nat. Rev. Microbiol.5, 209–218 (2007).
  • Regehr KJ , DomenechM, KoepselJTet al.: Biological implications of polydimethylsiloxane-based microfluidic cell culture.Lab Chip9(15), 2132–2139 (2009).
  • Rettig JR , FolchA: Large-scale single-cell trapping and imaging using microwell arrays.Anal. Chem.77(17), 5628–5634 (2005).
  • Ochsner M , DusseillerMR, GrandinHMet al.: Micro-well arrays for 3D shape control and high resolution analysis of single cells.Lab Chip7(8), 1074–1077 (2007).
  • Albrecht DR , TsangVL, SahRL, BhatiaSN: Photo- and electropatterning of hydrogel-encapsulated living cell arrays.Lab Chip5, 111–118 (2005).
  • Nichol JW , KhademhosseiniA: Modular tissue engineering: engineering biological tissues from the bottom up.Soft Matter5, 1312–1319 (2009).
  • Hahn MS , MillerJS, WestJL: Three-dimensional biochemical and biomechanical patterning of hydrogels for guiding cell behavior.Adv. Mater.18, 2679–2684 (2006).
  • Revzin A , RajagopalanP, TillesAW, BerthiaumeF, YarmushML, TonerM: Designing a hepatocellular microenvironment with protein microarraying and poly(ethylene glycol) photolithography.Langmuir20(8), 2999–3005 (2004).
  • Albrecht DR , UnderhillGH, WassermannTB, SahRL, BhatiaSN: Probing the role of multicellular organization in three-dimensional microenvironments.Nat. Methods3, 369–375 (2006).
  • Drury JL , MooneyDJ: Hydrogels for tissue engineering: scaffold design variables and applications.Biomaterials24, 4337–4351 (2003).
  • Lee KY , MooneyDJ: Hydrogels for tissue engineering.Chem. Rev.101, 1869–1877 (2001).
  • Rowley JA , MadlambayanG, MoneyDJ: Alginate hydrogels as synthetic extracellular matrix materials.Biomaterials20, 45–53 (1999).
  • Place ES , EvansND, StevensMM: Complexity in biomaterials for tissue engineering.Nat. Mater.8(6), 457–470 (2009).
  • Han D , Gouma P-I: Electrospun bioscaffolds that mimic the topology of extracellular matrix. Nanomedicine (Lond.)2, 37–41 (2006).
  • Vasita R , KattiDS: Nanofibers and their applications in tissue engineering.Int. J. Nanomedicine1, 15–30 (2006).
  • Borenstein J , KhademhosseiniA, TonerM, TakayamaS: Micro and Nanoengineering of the Cell Microenvironment: Technologies and Applications. Artech House, Boston, MA, USA (2009).
  • Du Y , CropekD, MofradMRK, WeinbergEJ, KhademhosseiniA, BorensteinJ: Microfluidic systems for engineering vascularized tissue constructs In: Microfluidics for Biological Applications. Tian W-C, Finehout E (Eds). Springer Science and Business Media, LLC, NY, USA (2008).
  • Whitesides GM : The origins and the future of microfluidics.Nature442(7101), 368–373 (2006).
  • Song YS , LinRL, MontesanoGet al.: Engineered 3D tissue models for cell-laden microfluidic channels.Anal Bioanal. Chem.395(1), 185–193 (2009).
  • Demirci U , YaraliogluGG, HaeggstromE, PercinG, ErgunS, Khuri-YakubBT: Acoustically actuated flextensional si/sub x/n/sub y/ and single-crystal silicon 2-D micromachined ejector arrays.IEEE Transactions on Semiconductor Manufacturing17(4), 517–524 (2004).
  • Demirci U , YaraliogluGG, HaeggstromE, Khuri-YakubBT: Femtoliter to picoliter droplet generation for organic polymer deposition using single reservoir ejector arrays.IEEE Transactions on Semiconductor Manufacturing18(4), 709–715 (2005).
  • Cabodi M : A microfluidic biomaterial.J. Am. Chem. Soc.127, 13788–13789 (2005).
  • Fidkowski C : Endothelialized microvasculature based on a biodegradable elastomer.Tissue Eng.11, 302–309 (2005).
  • Golden AP , TienJ: Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element.Lab Chip7, 720–725 (2007).
  • Gottwald E , GiselbrechtS, AugspurgerCet al.: A chip-based platform for the in vitro generation of tissues in three-dimensional organization.Lab Chip7(6), 777–785 (2007).
  • Golden AP , TienJ: Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element.Lab Chip7, 720–725 (2007).
  • Beebe DJ , MooreJS, BauerJMet al.: Functional hydrogel structures for autonomous flow control inside microfluidic channels.Nature404(6778), 588–590 (2000).
  • Song YS , LinRL, MontesanoGet al.: Engineered 3D tissue models for cell-laden microfluidic channels.Analyt. Bioanalyt. Chem.395, 185–193 (2009).
  • Cohen DL , MaloneE, LipsonH, BonassarLJ: Direct freeform fabrication of seeded hydrogels in arbitrary geometries.Tissue Eng.12, 1325–1335 (2006).
  • Therriault D , WhiteSR, LewisJA: Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly.Nature Mater.2, 265–271 (2003).
  • Xu F , MoonS, ZhangX, ShaoL, SongYS, DemirciU: Multi-scale heat and mass transfer modelling of cell and tissue cryopreservation.Philos. Transact. A Math. Phys. Eng. Sci.368(1912), 561–583 (2010).
  • Tang L , HuW: Molecular determinants of biocompatibility.Expert Rev. Med. Devices2(4), 493–500 (2005).
  • Cohen DL , MaloneE, LipsonH, BonassarLJ: Direct freeform fabrication of seeded hydrogels in arbitrary geometries.Tissue Eng.12(5), 1325–1335 (2006).
  • Therriault D , WhiteSR, LewisJA: Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly.Nat. Mater.2(4), 265–271 (2003).
  • Cui X , BolandT: Human microvasculature fabrication using thermal inkjet printing technology.Biomaterials30(31), 6221–6227 (2009).
  • Norotte C , MargaFS, NiklasonLE, ForgacsG: Scaffold-free vascular tissue engineering using bioprinting.Biomaterials30(30), 5910–5917 (2009).
  • Ringeisen BR , OthonCM, BarronJA, YoungD, SpargoBJ: Jet-based methods to print living cells.Biotechnol. J.1(9), 930–948 (2006).
  • Sanjana NE , FullerSB: A fast flexible ink-jet printing method for patterning dissociated neurons in culture.J. Neurosci. Methods136(2), 151–163 (2004).
  • Stuhrmann B , JahnkeHG, SchmidtMet al.: Versatile optical manipulation system for inspection, laser processing, and isolation of individual living cells.Rev. Sci. Instrum.77, 063116 (2006).
  • Pirlo RK , DeanDM, KnappDR, GaoBZ: Cell deposition system based on laser guidance.Biotechnol. J.1(9), 1007–1013 (2006).
  • Nahmias Y , SchwartzRE, VerfaillieCM, OddeDJ: Laser-guided direct writing for three-dimensional tissue engineering.Biotechnol. Bioeng.92(2), 129–136 (2005).
  • Demirci U , MontesanoG: Single cell epitaxy by acoustic picolitre droplets.Lab Chip7(9), 1139–1145 (2007).
  • Demirci U , MontesanoG: Cell encapsulating droplet vitrification.Lab Chip7(11), 1428–1433 (2007).
  • Demirci U : Acoustic picoliter droplets for emerging applications in semiconductor industry and biotechnology.J. Microelectromech. Syst.15(4), 957–966 (2006).
  • Chung BG , KangL, KhademhosseiniA: Micro- and nanoscale technologies for tissue engineering and drug discovery applications.Expert Opin. Drug Discov.2, 1–16 (2007).
  • Leach JB , SchmidtCE: Characterization of protein release from photocrosslinkable hyaluronic acid-polyethylene glycol hydrogel tissue engineering scaffolds.Biomaterials26(2), 125–135 (2005).
  • Langer R , VacantiJP: Tissue engineering.Science260, 920–926 (1993).
  • Jagur-Grodzinski J : Polymeric gels and hydrogels for biomedical and pharmaceutical applications.Polym. Adv. Technol.21(1), 27–47 (2010).
  • Hoare TR , KohaneDS: Hydrogels in drug delivery: progress and challenges.Polymer49, 1993–2007 (2008).
  • Ali M , HorikawaS, VenkateshS, SahaJ, HongJW, ByrnME: Zero-order therapeutic release from imprinted hydrogel contact lenses within in vitro physiological ocular tear flow.J. Control. Release124(3), 154–162 (2007).
  • Banerjee P , BhuniaAK: Mammalian cell-based biosensors for pathogens and toxins.Trends Biotechnol.27, 177–189 (2009).
  • Mazzoleni G , LorenzoDD, SteimbergN: Modelling tissues in 3D: the next future of pharmaco-toxicology and food research?Genes Nutr.4, 13–22 (2009).
  • Peppas N , HiltJZ, KhademhosseiniA, LangerR: Hydrogels in biology and medicine.Adv. Mater.18, 1–17 (2006).
  • Sung JH , ShulerML: A micro cell culture analog (microcca) with 3-D hydrogel culture of multiple cell lines to assess metabolism-dependent cytotoxicity of anti-cancer drugs.Lab Chip9(10), 1385–1394 (2009).
  • Mahler GJ , EschMB, GlahnRP, ShulerML: Characterization of a gastrointestinal tract microscale cell culture analog used to predict drug toxicity.Biotechnol. Bioeng.104(1), 193–205 (2009).
  • Banerjee P , LenzD, RobinsonJP, RickusJL, BhuniaAK: A novel and simple cell-based detection system with a collagen-encapsulated B-lymphocyte cell line as a biosensor for rapid detection of pathogens and toxins.Lab. Invest.88(2), 196–206 (2008).
  • Nickerson CA , RichterEG, OttCM: Studying host-pathogen interactions in 3-D: organotypic models for infectious disease and drug development.J. Neuroimmune Pharmacol.2(1), 26–31 (2007).
  • Dellatore SM , GarciaAS, MillerWM: Mimicking stem cell niches to increase stem cell expansion.Curr. Opin. Biotechnol.19(5), 534–540 (2008).
  • Breitbach M : Potential risks of bone marrow cell transplantation into infarcted hearts.Blood110, 1362–1369 (2007).
  • Engler AJ , GriffinMA, SenS, BonnemannCG, SweeneyHL, DischerDE: Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments.J. Cell. Biol.166(6), 877–887 (2004).
  • Anderson D , LevenbergS, LangerR: Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells.Nat. Biotechnol.22, 863–866 (2004).
  • Dawson E , MapiliG, EricksonK, TaqviS, RoyK: Biomaterials for stem cell differentiation.Adv. Drug Deliv. Rev.60(2), 215–228 (2008).
  • Chai C , LeongKW: Biomaterials approach to expand and direct differentiation of stem cells.Mol. Ther.15(3), 467–480 (2007).
  • Placzek MR , Chung I-M, Macedo HM et al.: Stem cell bioprocessing: fundamentals and principles. J. R. Soc. Interface6, 209–232 (2009).
  • Cushing MC , AnsethKS: Materials science. Hydrogel cell cultures.Science316(5828), 1133–1134 (2007).
  • Tibbitt MW , AnsethKS: Hydrogels as extracellular matrix mimics for 3D cell culture.Biotechnol. Bioeng.103(4), 655–663 (2009).
  • Lee SA , ChungSE, ParkW, LeeSH, KwonS: Three-dimensional fabrication of heterogeneous microstructures using soft membrane deformation and optofluidic maskless lithography.Lab Chip9, 1670–1675 (2009).
  • Norotte C , MargaFS, NiklasonLE, ForgacsG: Scaffold-free vascular tissue engineering using bioprinting.Biomaterials30, 5910–5917 (2009).
  • Gelain F : Novel opportunities and challenges offered by nanobiomaterials in tissue engineering.Int. J. Nanomedicine3(4), 415–424 (2008).
  • Cukierman E , PankovR, YamadaKM: Cell interactions with three-dimensional matrices.Curr. Opin. Cell Biol.14(5), 633–639 (2002).
  • Cukierman E , PankovR, StevensDR, YamadaKM: Taking cell-matrix adhesions to the third dimension.Science294(5547), 1708–1712 (2001).
  • Zahir N , WeaverVM: Death in the third dimension: apoptosis regulation and tissue architecture.Curr. Opin. Genet. Dev.14(1), 71–80 (2004).
  • Grossmann J : Molecular mechanisms of “Detachment-induced apoptosis–anoikis”.Apoptosis7(3), 247–260 (2002).
  • Saha K , PollockJF, SchafferDV, HealyKE: Designing synthetic materials to control stem cell phenotype.Curr. Opin. Chem. Biol.11(4), 381–387 (2007).
  • Jeong MK , ChoiMJ, KwonSJet al.: Ultrasonic characterization of thermal distribution in vicinity for a cylindrical thermal lesion in a biological tissue.Key Eng. Mater.321–323 II, 1133–1138 (2006).
  • Moon S , HasanSK, SongYSet al.: Layer by layer three-dimensional tissue epitaxy by cell-laden hydrogel droplets. Tissue Eng. Part C Methods16(1), 157–166 (2010).
  • Song YS , Adler,D, Xu,F, Kayaalp,E, Nureddin,A, Anchan,RM, Maas,RL, and Demirci, U: Vitrification and levitation of a liquid droplet on liquid nitrogen. Proc Natl Acad Sci U S A.107(10), 4596–4600 (2010).
  • Arumuganathar S , IrvineS, McEwanJR, JayasingheSN: Aerodynamically assisted bio-jets: the development of a novel and direct non-electric field driven methodology for engineering living organisms.Biomed. Mater. Mater. Tissue Eng. Regen. Med.2, 158–168 (2007).
  • Chen CY , BarronJA, RingeisenBR: Cell patterning without chemical surface modification: cell–cell interactions between printed bovine aortic endothelial cells (BAEC) on a homogeneous cell-adherent hydrogel.Appl. Surf. Sci.252(24), 8641–8645 (2006).
  • Saunders RE , GoughJE, DerbyB: Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing.Biomaterials29(2), 193–203 (2008).
  • Barron JA , WuP, LadouceurHD, RingeisenBR: Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns.Biomed. Microdevices6(2), 139–147 (2004).
  • Fukuda J , KhademhosseiniA, YeoYet al.: Micromolding of photocrosslinkable chitosan hydrogel for spheroid microarray and co-cultures.Biomaterials27(30), 5259–5267 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.