368
Views
0
CrossRef citations to date
0
Altmetric
Review

Molecular Basis of The Mucosal Immune System: From Fundamental Concepts to Advances in Liposome-Based Vaccines

, &
Pages 1617-1640 | Published online: 14 Dec 2010

Bibliography

  • Centers for Disease Control and Prevention (CDC): Deaths and hospitalizations related to 2009 pandemic influenza A (H1N1). Greece, May 2009–February 2010. Morb. Mortal. Wkly Rep.59(22), 682–686 (2010).
  • Phillips-Quagliata JM , LammME: Migration of lymphocytes in the mucosal immune system. In: Migration and homing of lymphoid cells Boca Raton. Husband AJ (Ed.). CRC Press, Boca Raton, FL, USA, 53–75(1988).
  • Hamann A , AndrewDP, Jablonski Westrich D, Holz-mann B, Butcher EC: Role of a4 integrins in lymphocyte homing to mucosal tissues in vivo. J. Immunol.152, 3282–3293 (1994).
  • McGhee JR , LammME, StroberW: Mucosal immune responses: an overview. Mucosal Immunol. (2nd Edition). Academic Press, New York, USA 485–506 (1999).
  • Ogra PL , FadenH, WelliverRC: Vaccination strategies for mucosal immune responses.Clin. Microbiol. Rev.14(2), 430–445 (2001).
  • Nugent J , PoAL, ScottEM: Design and delivery of non-parenteral vaccines.J. Clin. Pharm. Ther.23(4), 257–285 (1998).
  • Nilsen E , LundinK, KrajdR, ScottH, SoihdLM, BrandtzaegR: Gluten specific, HLA-DQ restricted T cells from coeliac mucosa produce cytoldnes with Th1 or ThO profile dominated by interferon-γ.Gut37, 766–776 (1995).
  • Brandtzaeg P , KiyonoH, PabstR, RussellMW: Terminology: nomenclature of mucosa-associated lymphoid tissue.Mucosal Immunol.1(1), 31–37 (2008).
  • Keljo DJ , HamiltonJR: Quantitative determination of macromolecular transport rate across intestinal Peyer‘s patches.Am. J. Physiol.244, G637–G644 (1983).
  • Rescigno M , UrbanoM, ValzasinaBet al.: Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria.Nat. Immunol.2, 361–367 (2001).
  • Malik B , GoyalAK, MangalS, ZakirF, VyasSP: Implication of gut immunology in the design of oral vaccines.Curr. Mol. Med.10(1), 47–70 (2010).
  • Chadwick S , KriegelC, AmijiM: Nanotechnology solutions for mucosal immunization.Adv. Drug Deliv. Rev.62, 394–407 (2010).
  • Holmgren J , CzerkinskyC: Mucosal immunity and vaccines.Nat. Med. Suppl.11(4), S45–S53 (2005).
  • Kiyono H , FukuyamaS: NALT versus Peyer‘s-patch mediated mucosal immunity.Nat. Rev. Immunol.4, 699–710 (2004).
  • Gebert A , RothkötterHJ, PabstR: M cells in Peyer‘s patches of the intestine.Int. Rev. Cytol.167, 91–159 (1996).
  • Tyrer P , FoxwellAR, CrippsAW, ApicellaMA, KydJM: Microbial pattern recognition receptors mediate M-cell uptake of a Gram-negative bacterium.Infect. Immun.74(1), 625–631 (2006).
  • Gulberg E , KeitaAV, SalimKSet al.: Identification of cell adhesion molecules in the human follicle-associated epithelium that improve nanoparticle uptake into the Peyer‘s patches.J. Pharmacol. Exp. Ther.319, 632–639 (2006).
  • Kraehenbuhl JP , NeutraMR: Epithelial M cells: differentiation and function.Annu. Rev. Cell Dev. Biol.16, 301–332 (2000).
  • Secott TE , LinTL, WuCC: Mycobacterium avium subsp. paratuberculosis fibronectin attachment protein facilitates M-cell targeting and invasion through a fibronectin bridge with host integrins.Infect. Immun.72, 3724–3732 (2004).
  • Tyrer P , FoxwellAR, KydJM, HarveyM, SizerP, CrippsAW: Validation and quantitation of an in vitro M cell model.Biochem. Biophys. Res. Commun.299, 377–383 (2002).
  • Clark MA , JepsonNL, SimmonsT, BoothA, HirstBH: Differential expression of lectin-binding sites defines mouse intestinal M-cells.J. Histochem. Cytochem.41, 1679–1687 (1993).
  • Giannasca PJ , GiannascaKT, LeichtnerAM, NeutraMR: Regional differences in glycoconjugates of intestinal M cells in mice: potential targets for mucosal vaccines.Am. J. Physiol.267, G1108–G1121 (1994).
  • Chionh YT , WeeJLK, EveryAL, NgGZ, SuttonP: M-cell targeting of whole killed bacteria induces protective immunity against gastrointestinal pathogens.Infect. Immun.77(7), 2962–2970 (2009).
  • Lavelle EC : Lectins and microparticles for enhanced oral vaccination.Methods38, 84–89 (2006).
  • Mantis NJ , CheungMC, ChintalacharuvuKR, ReyJ, CorthésyB, NeutraMR: Selective adherence of IgA to murine Peyer‘s patch M cells: evidence for a novel IgA receptor.J. Immunol.169, 1844–1851 (2002).
  • Smith MW , ThomasNW, JenkinsPG, MillerNGA, CremaschiD, PortaC: Selective transport of microparticles across Peyer‘s patch follicle-associated M cells from mice and rats.Exp. Physiol.80, 735–743 (1995).
  • Blanco LP , DiRitaVJ: Antibodies enhance interaction of Vibrio cholerae with intestinal M-like cells.Infect. Immun.74(12), 6957–6964 (2006).
  • Clark MA , HirstBH: Expression of junction-associated proteins differentiates mouse intestinal M cells from enterocytes.Histochem. Cell Biol.118, 137–147 (2002).
  • Gebert A , BartelsH: Occluding junctions in the epithelia of the gut-associated lymphoid tissue (GALT) of the rabbit ileum and caecum.Cell Tissue Res.266, 301–314 (1991).
  • Brayden DJ , BairdAW: A distinctive electrophysiological signature from the Peyer‘s patches of rabbit intestine.Br. J. Pharmacol.113, 593–599 (1994).
  • Mantis NJ , FreyA, NeutraMR: Accessibility of glycolipid and oligosaccharide epitopes on rabbit villous and follicle-associated epithelium.Am. J. Physiol. Gastrointest. Liver Physiol.278, G915–G923 (2000).
  • Bhalla DK , OwenRL: Cell renewal and migration in lymphoid follicles of Peyer‘s patches and cecum – an autoradiographic study in mice.Gastroenterology82, 232–242 (1982).
  • Niess JH , BrandS, GuXet al.: CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance.Science307, 254–258 (2005).
  • Pamer EG : Immune responses to commensal and environmental microbes.Nat. Immunol.8, 1173–1178 (2007).
  • Macpherson AJ , UhrT: Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria.Science303, 1662–1665 (2004).
  • Mohamadzadeh M , OlsonS, KalinaWVet al.: Lactobacilli activate human dendritic cells that skew T cells toward T helper 1 polarization.Proc. Natl Acad. Sci. USA102, 2880–2885 (2005).
  • Mohamadzadeha M , DuongbT, SandwickdSJ, HooverdT, KlaenhammerTR: Dendritic cell targeting of Bacillus anthracis protective antigen expressed by Lactobacillus acidophilus protects mice from lethal challenge.Proc. Natl Acad. Sci. USA17(106) 4331–4336 (2009).
  • Beaty SR , RoseCE Jr, Sung SS: Diverse and potent chemokine production by lung CD11bhigh dendritic cells in homeostasis and in allergic lung inflammation. J. Immunol.178, 1882–1895 (2007).
  • Kim TS , BracialeTJ: Respiratory dendritic cell subsets differ in their capacity to support the induction of virus-specific cytotoxic CD8+ T cell responses.PLoS One4(1), E4204 (2009).
  • Rescigno M , SabatinoAD: Dendritic cells in intestinal homeostasis and disease.J. Clin. Invest.119(9), 2441–2450 (2009).
  • Novak N , AllamJP, BettenH, HaberstokJ, BieberT: The role of antigen presenting cells at distinct anatomic sites: they accelerate and they slow down allergies.Allergy59, 5–14 (2004).
  • Seder RA , DarrahPA: T-cell quality in memory and protection: implications for vaccine design.Nat. Rev. Immunol.8, 247–258 (2008).
  • Bland PW , WarrenLG: Antigen presentation by epithelial cells of rat small intestine. II. Selective induction of suppressor T cells.Immunology58, 9–14 (1986).
  • Mayer L , ShlienR: Evidence for function of la molecules on gut epithelial cells in man.J. Exp. Med.166, 1471–1483 (1987).
  • Farstad IN , HalstensenTS, LienB, KilshawPJ, LazarovitzA, BrandtzaegP: Distribution of p7 integrins in human intestinal mucosa and organized gut-associated lymphoid tissue.Immunology89, 227–237 (1996).
  • Wong PY , YueG, YinK: Mucosal addressin cell adhesion molecule-1. A structural and functional analysis demarcates the integrin hinding motif.J. Immunol.157, 2488–2497 (1996).
  • McDermott MR , BienenstockJ: Evidence for a common mucosal immunologic system. I. Migration of B immunoblasts into intestinal, respiratory, and genital tissues.J. Immunol.122, 1892–1898 (1979).
  • Brandtzaeg P : Induction of secretory immunity and memory at mucosal surfaces.Vaccine25, 5467–5484 (2007).
  • Macpherson AJ , GeukingMB, McCoyKD: Immune responses that adapt the intestinal mucosa to commensal intestinal bacteria.Immunology115, 153–162 (2005).
  • Roy MJ , VarvayanisM: Development of dome epithelium in gut associated lymphoid tissues: association of IgA with M cells.Cell Tissue Res.248, 645–651 (1987).
  • Mantis NJ , CheungMC, ChintalacharuvuKR, ReJ, CorthésyB, NeutraMR: Selective adherence of IgA to murine Peyer‘s patch M cells: evidence for a novel IgA receptor.J. Immunol.169, 1844–1851 (2002).
  • Phalipon A , CorthesyB: Novel functions of the polymeric Ig receptor: well beyond transport of immunoglobulins.Trends Immunol.24, 55–58 (2003).
  • Burns JW , Siadat-PajouhM, KrishnaneyAA, GreenbergHB: Protective effect of rotavirus VP6-specific IgA monoclonal antibodies that lack neutralizing activity.Science272, 104–107 (1996).
  • Bomsel M , HeymanM, HociniH, LagayeS, BelecL, DupontC: Intracellular neutralization of HIV transcytosis across tight epithelial barriers by anti-HIV envelope protein dIgA or IgM.Immunity9, 277–287 (1998).
  • Fujioka H , EmancipatorSN, AikawaM, HuangDS, BlatnikF, KarbanT: Immunocytochemical colocalization of specific immunoglobulin A with Sendai virus protein in infected polarized epithelium.J. Exp. Med.188, 1223–1229 (1998).
  • Mazanec MB , CoudretCL, FletcherDR: Intracellular neutralization of influenza virus by immunoglobulin A anti-hemagglutinin monoclonal antibodies.J. Virol.69, 1339–1343 (1995).
  • Robinson JK , BlanchardTG, LevineAD, EmancipatorSN, LammME: A mucosal IgA-mediated excretory immune system in vivo.J. Immunol.166, 3688–3692 (2001).
  • Offit PA , CunninghamSL, DudzikKI: Memory and distribution of virus-specific cytotoxic T lymphocytes (CTLs) and CTL precursors after rotavirus infection.J. Virol.65, 1318–1324 (1991).
  • Hou S , DohertyPC: Partitioning of responder CD8+ T cells in lymph node and lung of mice with Sendai virus pneumonia by LECAM-1 and CD45RB phenotype.J. Immunol.150(5), 494–500 (1993).
  • Issekutz TB : The response of gut-associated T lymphocytes to intestinal viral immunization.J. Immunol.133, 2955–2959 (1984).
  • Offit PA , DudzikKI: Rotavirus-specific cytotoxic T lymphocytes appear at the intestinal mucosal surface after rotavirus infection.J. Virol.63, 3507–3513 (1989).
  • Bailey M , HailL, BlandPW, StokesCR: Production of cytokines by lymphocytes front spleen, mesenteric lymph node and intestinal lamina propria of pigs.Immunology82, 577–583 (1994).
  • Breese E , BraeggerCR, CorriganCJ, Walker-SmithJA, MacDonaidTT: Interieukin-2- and interferon-γ-secreting T cells in normal and diseased human intestinal mucosa.Immunology78, 127–131 (1993).
  • Holmgren J , CzerkinskyC, ErikssonK, MharandiA: Mucosal immunization and adjuvants: a brief overview of recent advances and challenges.Vaccine21(Suppl. 2), 589–595 (2003).
  • Ryan EJ , DalyLM, MillsKHG: Immunomodulators and delivery systems for vaccination by mucosal routes.Trends Biotechnol.19(8), 293–304 (2001).
  • Neutra MR , KozlowskiPA: Mucosal vaccines: the promise and the challenge.Nat. Rev. Immunol.6, 148–158 (2006).
  • Lemoine D , FrancotteM, PreatV: Nasal vaccines from fundamental concepts to vaccine development.Pharma Sci.8(1), 5–18 (1998).
  • Kemble G , GreenbergH: Novel generations of influenza vaccines.Vaccine21(16), 1789–1795 (2003).
  • Isaka M , YasudaY, TaniguchiTet al.: Mucosal and systemic antibody responses against an acellular pertussis vaccine in mice after intranasal co-administration with recombinant cholera toxin B subunit as an adjuvant.Vaccine21, 1165–1173 (2003).
  • Lewis DJM , HuoZ, BarnettSet al.: Transient facial nerve paralysis (Bell‘s Palsy) following intranasal delivery of a genetically detoxified mutant of Escherichia coli heat labile toxin.PLoS ONE4(9), E6999 (2009).
  • Mutsch M , ZhouW, RhodesPet al.: Use of the inactivated intranasal influenza vaccine and the risk of Bell‘s palsy in Switzerland.N. Engl. J. Med.350(9), 896–903 (2004).
  • Mestecky J , MoldoveanuZ, MichalekSM, MorrowCD, CompansRW, SchaferDP: Current opinions for vaccine delivery systems by mucosal routes.J. Control. Release48, 243–257 (1997).
  • Jain S , SharmaRK, VyasSP: Chitosan nanoparticles encapsulated vesicular systems for oral immunization: preparation, in-vitro and in-vivo characterization.J. Pharm. Pharmacol.58(3) 303–310 (2006).
  • Dea-Ayuela, Iniguez SR , Bolas-FernandezF: Microcapsules formulated in the enteric coating copolymer Eudragit L100 as delivery systems for oral vaccination against infections by gastrointestinal nematode parasites.J. Drug Target.14(8), 567–575 (2006).
  • Mercier GT , NehetePN, PasseriMFet al.: Oral immunization of rhesus macaques with adenoviral HIV vaccines using enteric-coated capsules.Vaccine25(52), 8687–8701 (2007).
  • Holmgren J , CzerkinskyC: Mucosal immunity and vaccines.Nat. Med.11, 545–553 (2005).
  • Sakaguchi S , WingK, MiyaraM: Regulatory. T cells-a brief history and perspective.Eur. J. Immunol.37, S116–S123 (2007).
  • Yuki Y , KiyonoH: New generation of mucosal adjuvants for the induction of protective immunity.Rev. Med. Virol.13(5), 293–310 (2003).
  • Neurath MF , FinottoS, GlimcherLH: The role of Th1/Th2 polarization in mucosal immunity.Nat. Med.8(6), 567–573 (2002).
  • Ouyang W , HningML, GaoZet al.: Stat6-independent GATA-3 autoactivation directs IL-4-independent Th2 development and commitment.Immunity12, 27–37 (2000).
  • Krup OC , KrollI, BoseG, FalkenbergFW: Cytokine depot formulations as adjuvants for tumor vaccines. I. Liposome encapsulated IL-2 as a depot formulation.J. Immunother.22(6), 525–538 (1999).
  • McKeever U , BarmanS, HaoTet al.: Protective immune responses elicited in mice by immunization with formulations of poly(lactideco-glycolide) microparticles.Vaccine20(11–12), 1524–1531 (2002).
  • Clark MA , BlairH, LiangL, BreyRN, BraydenD, HirstBH: Targeting polymerised liposome vaccine carriers to intestinal M cells.Vaccine20(1–2), 208–217 (2001).
  • Kreuter J , LiehlE: Protection induced by inactivated influenza virus vaccines with polymethylmethacrylate adjuvants.Med. Microbiol. Immunol. (Berl)165(2), 111–117 (1978).
  • Gregoriadis G : Engineering liposomes for drug delivery: progress and problems.Trends Biotechnol.13, 527–537 (1995).
  • Childers NK , MichalekSM: Liposomes, Novel Delivery Systems for Oral Vaccines. O‘Hagan DT (Ed.). CRC Press, Boca Raton, FL, USA (1994).
  • Frezard F : Liposomes: from biophysics to the design of peptide vaccines.Braz. J. Med. Biol. Res.32(2), 181–189 (1999).
  • Zhou F , KraehenbuhlJP, NeutraMR: Mucosal IgA response to rectally administered antigen formulated in IgA coated liposomes.Vaccine13(7), 637–644 (1995).
  • Tomizawa H , AramakiY, FujiiYet al.: Uptake of phosphatidylserine liposomes by rat Peyer‘s patches following intraluminal administration.Pharm. Res.10(4), 549–552 (1993).
  • Fujii Y , AramakiY, HaraT, YachiK, KikuchiandH, TsuchiyaS: Enhancement of systemic and mucosal immune responses following oral administration of liposomes.Immunol. Lett.36, 65–70 (1993).
  • Shek PN , YungYK, StanacevZ: Comparison between multilameliar and unilameliar liposomes in enhancing antibody formation.Immunology49, 37–44 (1983).
  • Tseng LP , ChiouCJ, ChenCCet al.: Effect of lipopolysaccharide on intranasal administration of liposomal Newcastle disease virus vaccine to SPF chickens.Vet. Immunol. Immunopathol.131, 285–289 (2009).
  • Amin M , JaafariMR, TafaghodiM: Impact of chitosan coating of anionic liposomes on clearance rate, mucosal and systemic immune responses following nasal administration in rabbits.Colloids Surfs B: Biointerfaces74, 225–229 (2009).
  • Owen RL : Sequential uptake of horseradish peroxidase by lymphoid follicle epithelium of Peyer‘s patches in the normal unobstructed mouse intestine: an ultrastructural study.Gastroenterology72, 440–451 (1977).
  • Rosen LV , PodjaskiB, BettmanI, OttoHF: Observations on the ultrastructure and function of the so-called ‘microfold’ or ‘membranous’ cells (M cells) by means of peroxidase as a tracer.Virchows Arch. A. Pathol. Anat. Histol.390, 289–212 (1981).
  • Gould-Fogerite S , Edghill-SmithY, KheiriMet al.: Lipid matrix-based subunit vaccines: a structure-function approach to oral and parenteral immunization.AIDS Res. Hum. Retroviruses10(Suppl. 2), S99–S103 (1994).
  • Jain S , SinghP, MishraV, VyasSP: Mannosylated niosomes as as adjuvant-carrier system for oral genetic immunization against hepatitis B.Immunol. Lett.101, 41–49 (2005).
  • Smith DC , LordJM, RobertsLM, JohannesL: Glycosphingolipids as toxin receptors.Semin. Cell Dev. Biol.15, 397–408 (2004).
  • Kataoka K , McGheeJR, KobayashiR, FujihashiK, ShizukuishiS, FujihashiK: Nasal Flt3 ligand cDNA elicits CD11c+CD8+ dendritic cells for enhanced mucosal immunity.J. Immunol.172(6), 3612–3619 (2004).
  • Sallusto F , LanzavecchiaA: Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor α.J. Exp. Med.179, 1109–1118 (1994).
  • Akbari O , PanjwaniN, GarciaS, TasconR, LowrieD, StockingerB: DNA vaccination: transfection and activation of dendritic cells as key events for immunity.J. Exp. Med.189, 169–178 (1999).
  • Sallusto F , CellaM, DanieliC, LanzavecchiaA: Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products.J. Exp. Med.182, 389–400 (1995).
  • Chang JS , ChoiMJ: pH-Sensitive liposomes as adjuvants for peptide antigens.Methods Enzymol.373, 127–136 (2003).
  • Lee KY , ChunE, SeongBL: Investigation of antigen delivery route in vivo and immune-boosting effects mediated by pH-sensitive liposomes encapsulated with Kb-restricted CTL epitope.Biochem. Biophys. Res. Commun.292, 682–688 (2002).
  • Haan A , GeerligsHJ, HuchshornJP, ScharrenburgGJM, PalacheAM, WilschJ: Mucosal immunoadjuvant activity of liposomes: induction of systemic IgG and secretory IgA responses in mice by intranasal immunization with an influenza subunit vaccine and coadministered liposomes.Vaccine13(2) 15–162 (1995).
  • Haan A , TomeeJFC, HuchshornjJP, WilschutJ: Liposomes as an immunoadjuvant system for stimulation of mucosal and systemic antibody responses against inactivated measles virus administered intranasally to mice.Vaccine13(14), 1320–1324 (1995).
  • Gregoriadis G , SaffieR, SouzaJB: Liposome-mediated DNA vaccination.FEBS Lett.402, 107–110 (1997).
  • Meyer KB , ThompsonM, LevyM, BarronL, SzokaFJ: Intratracheal gene delivery to the mouse airway characterization of plasmid DNA expression and pharmacokinetics.Gene Ther.2, 450–460 (1995).
  • Felgner PL , TsaiYJ, SukhuLet al.: Improved cationic lipid formulation for in vivo gene therapy.Ann. NY Acad. Sci.772, 126–139 (1996).
  • Khatri K , GoyalAK, GuptaPN, MishraN, MehtaA, VyasSP: Surface modified liposomes for nasal delivery of DNA vaccine.Vaccine26, 2225–2233 (2008).
  • Wang D , ChristopherME, NagataLPet al.: Intranasal immunization with liposome-encapsulated plasmid DNA encoding influenza virus hemagglutinin elicits mucosal, cellular and humoral immune responsesJ. Clin. Virol.315, 599–5106 (2004).
  • Guidotti LG , AndoK, HobbsMVet al.: Cytotoxic T lymphocytes inhibit hepatitis B virus gene expression by a noncytolytic mechanism in transgenic mice.Proc. Natl. Acad. Sci. USA91, 3764–3768 (1994).
  • Vogel FR : Adjuvants in perspective.Dev. Biol. Stand.92, 241–248 (1998).
  • Okada E , SasakiS, IshiiNet al.: Intranasal immunization of a DNA vaccine with IL-12- and granulocyte-macrophage colony-stimulating factor (GM-CSF)-expressing plasmids in liposomes induces strong mucosal and cell-mediated immune responses against HIV-1 antigens.J. Immunol.159(7), 3638–3647 (1997).
  • Wang D , XuJ, FengYet al.: Liposomal oral DNA vaccine (mycobacterium DNA) elicits immune response.Vaccine28, 3134–3142 (2010).
  • Okada J , CohenS, LangerR: In vitro evaluation of polymerized liposomes as an oral drug delivery system.Pharm. Res.12, 576–582 (1995).
  • Chen H , TorchilinV, LangerR: Polymerized liposomes as potential oral vaccine carriers: stability and bioavailability.J. Control. Release,42, 263–272 (1996).
  • Kunisawa J , NakanishiT, TakahashiIet al.: Sendai virus fusion protein-mediates simultaneous induction of MHC class I/II-dependent mucosal and systemic immune responses via the nasopharyngeal-associated lymphoreticular tissue immune system.J. Immunol.167, 1406–1412 (2001).
  • Nakanishi T , HayashiA, KunisawaJet al.: Fusogenic liposomes efficiently deliver exogenous antigen through the cytoplasm into the MHC class I processing pathway.Eur. J. Immunol.30, 1740–1747 (2000).
  • Hayashi A , NakanishiT, KunisawaJet al.: A novel vaccine delivery system using immuno potentiating fusogenic liposomes.Biochem. Biophys. Res. Commun.261, 824–828 (1999).
  • Takata S , OhtaniO, WatanabeY: Lectin binding patterns in rat nasal-associated lymphoid tissue (NALT) and the in fluence of various types of lectin on particle uptake in NALT.Arch. Histol. Cytol.63, 305–312 (2000).
  • Jeong KI , SuzukiH, NakayamaH, DoiK: Ultrastructural study on the follicle-associated epithelium of nasal-associ ated lymphoid tissue in specific pathogen-free (SPF) and conventional environment-adapted (SPF-CV) rats,J. Anat.196, 443–451(2000).
  • Kunisawa J , NakagawaS, MayumiT: Pharmacotherapy by intracellular delivery of drugs using fusogenic liposomes: application to vaccine development.Adv. Drug Deliv. Rev.52, 177–186 (2001).
  • Yuba E , KojimaC, HaradaA, Tana, Watarai S, Kono K: pH-Sensitive fusogenic polymer-modified liposomes as a carrier of antigenic proteins for activation of cellular immunity. Biomaterials31, 943–951 (2010).
  • Davidsen J , RosenkrandsI, ChristensenDet al.: Characterization of cationic liposomes based on dimethyldioctadecylammonium and synthetic cord factor from M. tuberculosis (trehalose 6,6´-dibehenate) – a novel adjuvant inducing both strong CMI and antibody responses.Biochim. Biophys. Acta1718, 22–31 (2005).
  • Christensen D , FogedC, RosenkrandsIet al.: CAF01 liposomes as a mucosal vaccine adjuvant: in vitro and in vivo investigations.Int. J.Pharm.390, 19–24 (2010).
  • Van Uden J , RazE: Introduction to immunostimulatory DNA sequences.Springer Semin. Immunopathol.22, 1–9 (2000).
  • Pisetsky DS : Mechanisms of immune stimulation by bacterial DNA.Springer Semin. Immunopathol.22, 21–33 (2000).
  • Klinman DM , YiAK, BeaucageSL, ConoverJ, KriegAM: CpG motifs present in bacteria DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon gamma.Proc. Natl Acad. Sci. USA93, 2879–2883 (1996).
  • Ballas ZK , RasmussenWL, KriegAM: Induction of NK activity in murine and human cells by CpG motifs in oligodeoxynucleotides and bacterial DNA.J. Immunol.157, 1840–1845 (1996).
  • Lipford GB , SparwasserT, BauerM, ZimmermannS, KochES, HeegK: Immunostimulatory DNA: sequence-dependent production of potentially harmful or useful cytokines.Eur. J. Immunol.27, 3420–3426 (1997).
  • Sparwasser T , KochES, VabulasRM, HeegK, LipfordGB, EllwartJW: Bacterial DNA and immunostimulatory CpG oligonucleotides trigger maturation and activation of murine dendritic cells.Eur. J. Immunol.28, 2045–2054 (1998).
  • Heeg K , ZimmermannS: CpG DNA as a Th1 trigger.Int. Arch Allergy Immunol.121, 87–97 (2000).
  • McCluskie MJ , ChuY, XiaJL, JesseeJ, GebyehuG, DavisHL: Direct gene transfer to the respiratory tract of mice with pure plasmid and lipid-formulated DNA.Antisense Nucleic Acid Drug Dev.8, 401–414 (1998).
  • Joseph A , Louria-HayonI, Plis-FinaroAet al.: Liposomal immunostimulatory DNA sequence (ISS-ODN): an efficient parenteral and mucosal adjuvant for influenza and hepatitis B vaccines.Vaccine20, 3342–3354 (2002).
  • Nohria A , RubinRH: Cytokines as potential vaccine adjuvants.Biotherapy7, 261–269 (1994).
  • Kim TS , DeKruyffRH, RupperR, MaeckerHT, LevyS, UmetsuDT: An ovalbumin-IL-12 fusion protein is more effective than ovalbumin plus free recombinant IL-12 in inducing a T helper cell type 1-dominated immune response and inhibiting antigen-specific IgE production.J. Immunol.158, 4137–4144 (1997).
  • Babai I , SamiraS, BarenholzY, Zakay-RonesZ, KedaraE: A novel influenza subunit vaccine composed of liposome-encapsulated haemagglutinin/neuraminidase and IL-2 or GM-CSF. I. Vaccine characterization and efficacy studies in mice.Vaccine17, 1223–1238 (1999).
  • Oya Alpar H , SomavarapuS, AtuahKN, BramwellVW: Biodegradable mucoadhesive particulates for nasal and pulmonary antigen and DNA delivery.Adv. Drug Deliv. Rev.57, 411–430 (2005).
  • Chiou C , TsengLP, DengMCet al.: Mucoadhesive liposomes for intranasal immunization with an avian influenza virus vaccine in chickens.Biomaterials30, 5862–5868 (2009).
  • Tiwari S , GoyalAK, MishraNet al.: Liposome in situ gelling system: novel carrier based vaccine adjuvant for intranasal delivery of recombinant protein vaccine.Procedia Vaccinol.1, 148–163 (2009).
  • Tam JP , SpetzlerJC: Chemoselective approaches to the preparation of peptide dendrimers and branched artificial proteins using unprotected peptides as building blocks.Biomed. Pept. Proteins Nucleic Acids.1, 123–132 (1995).
  • Fostera N , HirstBH: Exploiting receptor biology for oral vaccination with biodegradable particulates.Adv. Drug Deliv. Rev.57, 431–450 (2005).
  • Gupta PN , VyasSP: Investigation of lectinized liposomes as M-cell targeted carrier adjuvant for mucosal immunization.Colloids and Surf. B: Biointerfaces82(1), 118–125 (2011).
  • Pappo J , ErmakTH, StegerHJ: Monoclonal antibody directed targeting of fluorescent polystyrene microsphere to Peyer‘s patches.Immunology73, 277–280 (1991).
  • Velez CN , TonkonogySL, LichtmanSN, ChoMJ: Sensitized liposomes as an antigen delivery system for the stimulation of mucosal immunity.J. Drug Target5(1), 15–24 (1997).
  • Lian T , BuiT, HoRJY: Formulation of HIV-envelope protein with lipid vesicles expressing ganglioside GM1 associated to cholera toxin B enhances mucosal immune responses.Vaccine18, 604–611 (2000).
  • Harokopakis E , HajishengallisG, MichalekSM: Effectiveness of liposomes possessing surface-linked recombinant B subunit of cholera toxin as an oral antigen delivery system.Infect. Immun.66(9), 4299–4304 (1998).
  • Salazar-Gonzalez RM , NiessJH, ZammitDJet al.: CCR6-mediated dendritic cell activation of pathogen-specific T cells in Peyer‘s patches.Immunity24, 623–632 (2006).
  • Iwasaki A , and Kelsall BL: Unique functions of CD11B+, CD8α+, and double-negative Peyer‘s patch dendritic cells. J. Immunol.166, 4884–4890 (2001).
  • Tezuka H , AbeY, IwataMet al.: Regulation of IgA production by naturally occurring TNF/iNOS-producing dendritic cells.Nature448, 929–933 (2007).
  • Contractor N , LoutenJ, KimL, BironCA, KelsallBL: Cutting edge: Peyer‘s patch plasmacytoid dendritic cells (pDCs) produce low levels of type I interferons: possible role for IL-10, TGFβ, and prostaglandin E2 in conditioning a unique mucosal pDC phenotype.J. Immunol.179, 2690–2694 (2007).
  • Coombes JL , SiddiquiKRR, Arancibia-CarcamoCVet al.: A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β and retinoic acid dependent mechanism.J. Exp. Med.204, 1757–1764 (2007).
  • Denning TL , WangYC, PatelSR, WilliamsIR, PulendranB: Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses.Nat. Immunol.8, 1086–1094 (2007).
  • Uematsu S , FujimotoK, JangMHet al.: Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5.Nat. Immunol.9, 769–776 (2008).
  • Johansson-Lindbom B , AgaceWW, ParkerCM, PowrieF: Functional specialization of gut CD103+ dendritic cells in the regulation of tissue-selective T cell homing.J. Exp. Med.202, 1063–1073 (2005).
  • Broere F , PreMF, BerkelLA, GarssenJet al.: Cyclooxygenase-2 in mucosal DC mediates induction of regulatory T cells in the intestine through suppression of IL-4.Mucosal Immunol.2, 254–264 (2009).
  • Godthelp T , FokkensWJ, KleinjanAet al.: Antigen presenting cells in the nasal mucosa of patients with allergic rhinitis during allergen provocation.Clin. Exp. Allergy26, 677–688 (1996).
  • Munn DH , SharmaMD, LeeJRet al.: Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase.Science297, 1867–1870 (2002).
  • Novak N , HaberstokJ, GeigerE, BieberT: Dendritic cells in allergy.Allergy54, 792–803 (1999).
  • Bertorelli G , BocchinoV, ZhouXet al.: Dendritic cell number is related to IL-4 expression in the airways of atopic asthmatic subjects.Allergy55, 449–454 (2000).
  • Akbari O , DeKruyffRH, UmetsuDT: Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen.Nat. Immunol.2, 725–731 (2001).
  • Veldhoen M , HockingR, AtkinsC, LocksleyR, StockingerB: TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells.Immunity24, 179–189 (2006).
  • Mangan PR , HarringtonLE, O‘QuinnDBet al.: Transforming growth factor-β induces development of the TH17 lineage.Nature441, 231–234 (2006).
  • Bettelli E , CarrierY, GaoWet al.: Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells.Nature441, 235–238 (2006).
  • Martin-Orozco N , MuranskiP, ChungYet al.: T helper 17 cells promote cytotoxic T cell activation in tumor immunity.Immunity31(20), 787–798 (2009).
  • Khader SA , BellGK, PearlJKet al.: IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge.Nat. Immunol.8(4), 369–377 (2007).
  • Jaffar Z , FerriniME, HerrittLA, RobertsK: Cutting edge: lung mucosal Th17-mediated responses induce polymeric Ig receptor expression by the airway epithelium and elevate secretory IgA level.J. Immunol.182, 4507–4511 (2009).
  • Datta SK , SabetM, NguyenKPLet al.: Mucosal adjuvant activity of cholera toxin requires Th17 cells and protects against inhalation anthrax.Proc. Natl Acad. Sci.107(23), 10638–10643 (2010).
  • Yamamoto S , KiyonoH, YamamotoM, ImaokaK, FujihashiK, van Ginkel FW: A nontoxic mutant of cholera toxin elicits Th2-type responses for enhanced mucosal immunity. Proc. Natl Acad. Sci. USA94(10), 5267–5272 (1997).
  • Rowe B , TaylorJ, BettelheimKA: An investigation of traveller‘s diarrhoea.Lancet1(7636), 1–5 (1970).
  • Tamura S , SamegaiY, KurataH, NagamineT, AizawaC, KurataT: Protection against influenza virus infection by vaccine inoculated intranasally with cholera toxin B subunit.Vaccine6(5), 409–413 (1998).
  • Hagiwara Y , KawamuraYI, KataokaKet al.: A second generation of double mutant cholera toxin adjuvants: enhanced immunity without intracellular trafficking.J. Immunol.177, 3045–3054 (2006).
  • Yoshino N , FujihashiK, HagiwaraYet al.: Co-administration of cholera toxin and apple polyphenol extract as a novel and safe mucosal adjuvant strategy.Vaccine27, 4808–4817 (2009).
  • Romero JF , CiabattiniA, GuillaumePet al.: Intranasal administration of the synthetic polypeptide from the C-terminus of the circumsporozoite protein of Plasmodium berghei with the modified heat-labile toxin of Escherichia coli (LTK63) induces a complete protection against malaria challenge.Vaccine27, 1266–1271 (2009).
  • Kende M , TanX, WlazlowskiC, WilliamsR, LindseyC, GiudiceGD: Enhancement of intranasal vaccination with recombinant chain A ricin vaccine (rRV) in mice by the mucosal adjuvants LTK63 and LTR72.Vaccine25, 3219–3227 (2007).
  • Tempesta M , CameroaM, BellaciccoALet al.: Caprine herpesvirus 1 vaccine with the LTK63 mutant as a mucosal adjuvant induces strong protection against genital infection in goats.Vaccine25, 7927–7930 (2007).
  • Isaka M , YasudaY, TaniguchiTet al.: Mucosal and systemic antibody responses against an acellular pertussis vaccine in mice after intranasal co-administration with recombinant cholera toxin B subunit as an adjuvant.Vaccine21, 1165–1173 (2003).
  • Klinguer C , BeckA, De-LysPet al.: Lipophilic quaternary ammonium salt acts as a mucosal adjuvant when co-administered by the nasal route with vaccine antigens.Vaccine19, 4236–4244 (2001).
  • Abdul-Wahid A , FaubertG: Mucosal delivery of a transmission-blocking DNA vaccine encoding Giardia lamblia CWP2 by Salmonella typhimurium bactofection vehicle.Vaccine25(50), 8372–8383 (2007).
  • Xu Q , PichicheroME, SimpsonLL, EliasM, SmithLA, ZengM: An adenoviral vector-based mucosal vaccine is effective in protection against botulism gene-based mucosal vaccine against botulism.Gene Ther.16, 367–375 (2009).
  • Jakobsen H , BjarnarsonS, GiudiceGD, MoreauM, SiegristCA, JonsdottirI: Intranasal immunization with pneumococcal conjugate vaccines with LT-K63, a nontoxic mutant of heat-labile enterotoxin, as adjuvant rapidly induces protective immunity against lethal pneumococcal infections in neonatal mice.Infect. Immun.70(3), 1443–1452 (2002).
  • Estrada A , McDermottMR, UnderdownBJ, SniderDP: Intestinal immunization of mice with antigen conjugated to anti-MHC class II antibodies.Vaccine13(10), 901–907 (1995).
  • Aguila A , DonachieAM, PeyreM, McSharryCP, SesardicD, MowatAM: Induction of protective and mucosal immunity against diphtheria by a immune stimulating complex (ISCOMS) based vaccine.Vaccine24, 5201–5210 (2006).
  • Jepson MA , ClarkMA, FosterNet al.: Targeting to intestinal M cells.J. Anat.189, 507–516 (1996).
  • Clark MA , JepsonMA, SimmonsNL, HirstBH: Expression of junction-associated proteins differentiates mouse intestinal M cells from enterocytes.Tissue Res.282, 455–461 (1995).
  • Neutra MR , PhillipsT, MayerE, FishkindDJ, LazaridesE: Intermediate filaments as mechanical integrators of cellular space.Cell Tissue Res.247, 537–546 (1987).
  • Porta C , JamesPS, PhillipsAD, SavidgeTC, SmithMW, CremaschiD: Particle uptake by Peyer‘s patches: a pathway for drug and vaccine delivery.Exp. Physiol.77, 929–932 (1992).

Patent

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.