2,087
Views
0
CrossRef citations to date
0
Altmetric
Editorial

Nanofabrication Techniques for Controlled Drug-Release Devices

, &
Pages 1-6 | Published online: 23 Dec 2010

Bibliography

  • Freitas RA Jr: Nanomedicine. Vol. 1: Basic Capabilities. Landes Bioscience Austin, Tx, USA (1999).
  • Gref R , MinamitakeY, PeracchiaMT, TrubetskoyV, TorchilinV, LangerR: Biodegradable long-circulating polymeric nanospheres.Science18, 263(5153), 1600–1603 (1994).
  • Gratton SEA , WilliamsSS, NapierMEet al.: The pursuit of a scalable nanofabrication platform for use in material and life science applications.Acc. Chem. Res.41, 1685–1695 (2008).
  • Rejman J , OberleV, ZuhornIS, HoekstraD: Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis.Biochem. J.377, 159–169 (2004).
  • Zauner W , FarrowNA, HainesAMR: In vitro uptake of polystyrene microspheres: effect of particle size, cell line and cell density.J. Control. Release71(1), 39–51 (2001).
  • Oupicky D , KonakC, UlbrichK, WolfertMA, SeymourLW: DNA delivery systems based on complexes of DNA with synthetic polycations and their copolymers.J. Control. Release65(1–2), 149–171 (2000).
  • Farokhzad OC , SangyongJ, KhademhosseiniA, TranTNT, LavanDA, LangerR: Nanoparticle–aptamer bioconjugates: a new approach for targeting prostate cancer cells.Cancer Res.64(21), 7668–7672 (2004).
  • Santini JT , CimaMJ, LangerR: A controlled-release microchip.Nature397, 335–338 (1999).
  • Li Y , ShawgoRS, LangerR, CimaMJ: Mechanical testing of gold membranes on a MEMS device for drug delivery. Presented at: 2nd Annual IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology. Madison, WI, USA, 2–4 May, 2002.
  • Grayson ACR , CimaMJ, LangerR: A polymeric microchip for controlled release. In: 6th U.S.-Japan Symposium on Drug Delivery Systems Abstract Book. Langer R, Hashida M; Controlled Release Society (Eds). Deerfield, IL, USA (2001).
  • Armani DK , LiuC: Microfabrication technology for polycaprolac tone, a biodegradable polymer.J. Micromech. Microeng.10, 80–84 (2000).
  • Nabavi M : Steady and unsteady flow analysis in microdiffusers and micropumps: a critical review.Microfluid. Nanofluidics7(5), 599–619 (2009).
  • Laser DJ , SantiagoJG: A review of micropumps.J. Micromech. Microeng.14, R35–R64, (2004).
  • Chen L , ChooJ, YanB: The microfabricated electrokinetic pump: a potential promising drug delivery technique.Expert Opin. Drug Deliv.4(2), 119–129 (2007).
  • Chung AJ , KimD, EricksonD: Electrokinetic microfluidic devices for rapid, low power drug delivery in autonomous microsystems.Lab. Chip.8, 330 (2008).
  • Borenstein JT : BioMEMS technologies for regenerative medicine.Mater. Res. Soc. Symp. Proc.1139 (2009).
  • Soare MA , PicuRC, TichyJ, LuTM, WangGC: Fluid transport through nanochannels using nanoelectromechanical actuators.J. Intell. Mater. Syst. Struct.17, 3, 231–238 (2006).
  • Staples M : Microchips and controlled-release drug reservoirs.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2(4), 400–417 (2010).
  • Richards Grayson AC , ChoiIS, TylerBMet al.: Multi-pulse drug delivery from a resorbable polymeric microchip device.Nat. Mater.2, 767 (2003).
  • McAllister DV , AllenMG, PrausnitzMR: Microfabricated microneedles for gene and drug delivery.Annu. Rev. Biomed. Eng.2, 289–313 (2000).
  • Prausnitz MR : Overcoming skin‘s barrier: the search for effective and user-friendly drug delivery.Diab. Tech. Ther.3, 233–236 (2001).
  • Kaushik S , HordAH, DensonDDet al.: Lack of pain associated with microfabricated microneedles.Anesth. Analg.92, 502–504 (2001).
  • Biomedical Nanostructures. Gonsalves K, Halberstadt C, Laurencin CT, Nair L (Eds). John Wiley & Sons, New York, USA 3–24 (2008).
  • Torres AJ , WuM, HolowkaD, BairdB: Nanobiotechnology and cell biology: micro- and nanofabricated surfaces to investigate receptor-mediated signaling.Annu. Rev. Biophys. Biomol. Struct.37, 265–288 (2008).
  • Wu B , KumarA: Extreme ultraviolet lithography.J. Vac. Sci. Technol. B 25, 1743–1761 (2007).
  • Vieu C , CarcenacF, PepinAet al.: Electron beam lithography: resolution limits and applications.Appl. Surf. Sci.164, 111–117 (2000).
  • Murray A , ScheinfeinM, IsaacsonM, AdesidaI: Radiolysis and resolution limits of inorganic halide resists.J. Vac. Sci. Technol. B3, 367–372 (1985).
  • Deubel M , von Freymann G, Wegener M, Pereira S, Busch K, Soukoulis CM: Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nat. Mater.3(7), 444 (2004).
  • Tseng AA : Recent developments in nanofabrication using focused ion beams.Small1, 924–939 (2005).
  • Nagase T , GamoK, KubotaT, MashikoS: Direct fabrication of gap electrodes by focused ion beam etching.Thin Solid Films499, 279–284 (2006).
  • Kumar A , WhitesidesGM: Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ‘Ink’ followed by chemical etching.Appl. Phys. Lett.63, 2002–2004 (1993).
  • Love JC , EstroffLA, KriebelJK, NuzzoRG, WhitesidesGM: Self-assembled monolayers of thiolates on metals as a form of nanotechnology.Chem. Rev.105, 1103–1170 (2005).
  • Chou SY , Krauss,PR, Renstrom,PJ: Imprint lithography with 25-nanometer resolution.Science272, 85–87 (1996).
  • Chou SY , KraussPR, ZhangW, GuoL, ZhuangL: Sub-10 nm imprint lithography and applications.J. Vac. Sci. Technol. B15, 2897–2904 (1997).
  • Li MT , ChenL, ZhangW, ChouSY: Pattern transfer fidelity of nanoimprint lithography on six-inch wafers.Nanotechnology1433–36 (2003).
  • Colburn M , JohnsonSC, StewartMDet al.: Step and flash imprint lithography: a new approach to high-resolution patterning.Proc. SPIE3676, 379–389 (1999).
  • Chen L , DengXG, WangJ, TakahashiK, LiuF: Defect control in nanoimprint lithography.J. Vac. Sci. Technol. B 23 (5/6), 2933 (2005).
  • Gratton SEA , WilliamsSS, NapierMEet al.: The pursuit of a scalable nanofabrication platform for use in material and life science applications.Acc. Chem. Res.41, 1685–1695 (2008).
  • Piner RD , ZhuJ, XuF, HongS, MirkinCA: ‘Dip-pen’ nanolithography.Science283, 661–663 (1999).
  • Ginger DS , ZhangH, MirkinCA: The evolution of dip-pen nanolithography.Angew. Chem. Int. Ed.43, 30–45 (2004).
  • Salaita K , WangY, MirkinCA: Applications of dip-pen nanolithography.Nat. Nanotechnol.2, 145–155 (2007).
  • Salaita K , WangY, FragalaJet al.: Massively parallel dip-pen nanolithography with 55000-pen two-dimensional arrays.Angew. Chem. Int. Ed.45, 7220–7223 (2006).
  • Choi HK , ParkJU, ParkOO, FerreiraPM, GeorgiadisJG, RogersJA: Scaling laws for jet pulsations associated with high-resolution electrohydrodynamic printing.Appl. Phys. Lett.92, 123109–1–123109–3 (2008).
  • Huo F , ZhengZ, ZhengG, GiamLR, ZhangH, MirkinCA: Polymer pen lithography.Science321, 1658–1660 (2008).
  • Demers LM , GingerDS, ParkSJ, LiZ, ChungSW, MirkinCA: Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography.Science296, 1836–1838 (2002).
  • Deckman HW , DunsmuirJH: Natural lithography.Appl. Phys. Lett.41, 377–379 (1982).
  • Lipski AM , JaquieryC, ChoiHet al.: Nanoscale engineering of biomaterial surfaces.Adv. Mater.19, 553–557 (2007).
  • Wood MA : Colloidal lithography and current fabrication techniques producing in-plane nanotopography for biological applications.J. R. Soc. Interface4, 1–17 (2007).
  • Shin K , XiangH, MoonSIet al.: Curving and frustrating flatland.Science306, 76 (2004).
  • Rockford L , LiuY, ManskyPet al.: Polymers on nanoperiodic, heterogeneous surfaces.Phys. Rev. Lett.82, 2602–2605 (1999).
  • Stevens MM , GeorgeJH: Exploring and engineering the cell surface interface.Science310, 1135–1138 (2005).
  • Yin Y , LuY, GatesB, XiaY: Template-assisted self-assembly: a practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures.J. Am. Chem. Soc.123, 8718–8729 (2001).
  • Camargo PHC , RycengaM, AuL, XiaY: Isolating and probing the hot spot formed between two silver nanocubes.Angew. Chem. Int. Ed.48, 2180–2184 (2009).
  • Chou SY , ZhuangL: Lithographically-induced self-assembly of periodic polymer micropillar arrays.J. Vac. Sci. Technol.B17(6), 3197–3202 (1999).
  • Chen L , ZhuangL, DeshpandeP, ChouSY: Novel polymer patterns formed by lithographically induced self-assembly (LISA),Langmuir21, 818–821 (2005)
  • Gracias DH , TienJ, BreenTL, HsuC, WhitesidesGM: Forming electrical networks in three dimensions by self-assembly.Science289, 1170–1172 (2000).

Patents

  • Gracias David H, Leong Timothy Gar-ming, Ye Hongke, US 2009/0311190 A1 (2009).
  • Chou SY, Chen L: Composition and process for Nanoimprint, US 2004/0137734 (2004).
  • Chiming W: Implantable nano pump for drug delivery, US 2008/0161779 A1 (2008).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.