267
Views
0
CrossRef citations to date
0
Altmetric
Review

Emerging Applications of Multifunctional Elastin-Like Recombinamers

, , , , &
Pages 111-122 | Published online: 23 Dec 2010

Bibliography

  • Sarikaya M , TamerlerC, JenAKYet al.: Molecular biomimetics: nanotechnology through biology.Nat. Mater.2, 577–585 (2003).
  • Rodríguez-Cabello JC , PrietoS, AriasFJ, RegueraJ, RibeiroA: Nanobiotechnological approach to engineered biomaterial design: the example of elastin-like polymers.Nanomedicine1, 267–280 (2006).
  • Langer R , TirrellDA: Designing materials for biology and medicine.Nature428, 487–492 (2004).
  • Almine JF , BaxDV, MithieuxSMet al.: Elastin-based materials.Chem. Soc. Rev.39, 3371–3379 (2010).
  • Floss DM , SchallauK, Rose-JohnSet al.: Elastin-like polypeptides revolutionize recombinant protein expression and their biomedical application.Trends Biotechnol.28, 37–45 (2010).
  • MacEwan SR , CallahanDJ, ChilkotiA: Stimulus-responsive macromolecules and nanoparticles for cancer drug delivery.Nanomedicine5, 793–806 (2010).
  • Rodríguez-Cabello JC , MartínL, AlonsoMet al.: ‘Recombinamers’ as advanced materials for the post-oil age.Polymer50, 5159–5169 (2009).
  • Ribeiro A , AriasFJ, RegueraJet al.: Influence of the amino-acid sequence on the inverse temperature transition of elastin-like polymers.Biophys. J.97, 312–320 (2009).
  • Urry DW : What sustains life? Consilient mechanisms for protein-based machines and materials. Springer-Verlag, New York, NY, USA (2006).
  • Muiznieks LD , WeissAS, KeeleyFW: Structural disorder and dynamics of elastin.Biochem. Cell Biol.88, 239–250 (2010).
  • Pometun MS , ChekmevenEY, WitterbortRJ: Quantitative observation of backbone disorder in native elastin.J. Biol. Chem.279, 7982–7987 (2004)
  • Li B , AlonsoDOV, DaggettV: The molecular basis for the inverse temperature transition of elastin.J. Mol. Biol.305, 581–592 (2001).
  • Floquet N , Héry-HuynhS, DauchezMet al.: Structural characterization of VGVAPG, an elastin-derived peptide.Biopolymers76, 266–280 (2004).
  • Shokouhi B , CobanC, HasirciVet al.: The role of multiple toll-like receptor signaling cascades on interactions between biomedical polymers and dendritic cells.Biomaterials31, 5759–5771 (2010).
  • Annabi N , MithieuxSM, WeissASet al.: The fabrication of elastin-based hydrogels using high pressure CO2.Biomaterials30, 1–7 (2009).
  • Urry DW , ParkerTM, ReidMCet al.: Biocompatibility of the bioelastic materials, Poly(GVGVP) and its gamma-irradiation cross-linked matrix: summary of generic biological test-results.J. Bioact. Compat. Pol.6, 263–282 (1991).
  • Nicol A , GowdaDC, ParkerTMet al.: Elastomeric polytetrapeptide matrices: hydrophobicity dependence of cell attachment from adhesive (GGIP)n to nonadhesive (GGAP)n even in serum.J. Biomed. Mater. Res.27, 801–810 (1993).
  • Sallach RE , CuiW, WenJet al.: Elastin-mimetic protein polymers capable of physical and chemical crosslinking.Biomaterials30, 409–422 (2009).
  • Woodhouse KA , KlementP, ChenVet al.: Investigation of recombinant human elastin polypeptides as non-thrombogenic coatings.Biomaterials25, 4543–4553 (2004).
  • Nowatzki PJ , TirrellDA: Physical properties of artificial extracellular matrix protein films prepared by isocyanate crosslinking.Biomaterials25, 1261–1267 (2004).
  • Martín L , AlonsoM, MollerMet al.: 3D microstructuring of smart bioactive hydrogels based on recombinant elastin-like polymers.Soft Matter5, 1591–1593 (2009).
  • García Y , HemantkumarN, CollighanRet al.: In vitro characterization of a collagen scaffold enzymatically cross-linked with a tailored elastin-like polymer.Tissue Eng. Part A15, 887–899 (2009).
  • Nagapudi K , BrinkmanWT, LeisenJEet al.: Photomediated solid-state cross-linking of an elastin-mimetic recombinant protein polymer.Macromolecules35, 1730–1737 (2002).
  • Lee J , MacoskoCW, UrryDW: Swelling behavior of γ-irradiation cross-linked elastomeric polypentapeptide-based hydrogels.Macromolecules34, 4114–4123 (2001).
  • Liu JC , TirrellDA: Cell response to RGD density in cross-linked artificial extracellular matrix protein films.Biomacromolecules9, 2984–2988 (2008).
  • Di Zio K , TirrellDA: Mechanical properties of artificial protein matrices engineered for control of cell and tissue behavior.Macromolecules36, 1553–1558 (2003).
  • Betre H , OngSR, GuilakFet al.: Chondrocytic differentiation of human adipose-derived adult stem cells in elastin-like polypeptide.Biomaterials27, 91–99 (2006).
  • Lim DW , NettlesDL, SettonLAet al.: In situ cross-linking of elastin-like polypeptide block copolymers for tissue repair.Biomacromolecules9, 222–230 (2008).
  • Martín L , AriasFJ, AlonsoMet al.: Rapid micropatterning by temperature-triggered reversible gelation of a recombinant smart elastin-like tetrablock-copolymer.Soft Matter6, 1121–1124 (2010).
  • Sallach RE , CuiW, BalderramaFet al.: Long-term biostability of self-assembling protein polymers in the absence of covalent crosslinking.Biomaterials31, 779–791 (2010).
  • Martínez E , EngelE, PlanellJAet al.: Effects of artificial micro- and nano-structured surfaces on cell behaviour.Ann. Anat.191, 126–135 (2009).
  • Hirano Y , MooneyDJ: Peptide and protein presenting materials for tissue engineering.Adv. Mater.16, 17–25 (2004).
  • Rodríguez-Cabello JC , RegueraJ, GirottiAet al.: Developing functionality in elastin-like polymers by increasing their molecular complexity: the power of the genetic engineering approach.Prog. Polym. Sci.30, 1119–1145 (2005).
  • Hersel U , DahmenC, KesslerH: RGD modified polymers: biomaterials for stimulated cell adhesion and beyond.Biomaterials24, 4385–4415 (2003).
  • Straley KS , HeilshornSC: Design and adsorption of modular engineered proteins to prepare customized, neuron-compatible coatings.Front. Neuroengineering2, 9 (2009).
  • Nicol A , GowdaDC, UrryDW: Cell-adhesion and growth on synthetic elastomeric matrices containing Arg–Gly–Asp–Ser.J. Biomed. Mater. Res.26, 393–413 (1992).
  • Panitch A , YamaokaT, FournierMJet al.: Design and biosynthesis of elastin-like artificial extracellular matrix proteins containing periodically spaced fibronectin CS5 domains.Macromolecules32, 1701–1703 (1999).
  • Liu JC , HeilshornSC, TirrellDA: Comparative cell response to artificial extracellular matrix proteins containing the RGD and CS5 cell-binding domains.Biomacromolecules5, 497–504 (2004).
  • Heilshorn SC , DiZioKA, WelshERet al.: Endothelial cell adhesion to the fibronectin CS5 domain in artificial extracellular matrix proteins.Biomaterials24, 4245–4252 (2003).
  • Girotti A , RegueraJ, Rodríguez-CabelloJCet al.: Design and bioproduction of a recombinant multi(bio)functional elastin-like protein polymer containing cell adhesion sequences for tissue engineering purposes.J. Mater. Sci. Mater. Med.15, 479–484 (2004).
  • Plouffe BD , NjokaDN, HarrisJet al.: Peptide-mediated selective adhesion of smooth muscle and endothelial cells in microfluidic shear flow.Langmuir23, 5050–5055 (2007).
  • Straley KS , HeilshornSC: Independent tuning of multiple biomaterial properties using protein engineering.Soft Matter5, 114–124 (2009).
  • Maquart FX , PascoS, RamontLet al.: An introduction to matrikines: extracellular matrix-derived peptides which regulate cell activity. Implication in tumor invasion.Crit. Rev. Oncol. Hematol.49, 199–202 (2004).
  • Martín L , AlonsoM, GirottiAet al.: Synthesis and characterization of macroporous thermosensitive hydrogels from recombinant elastin-like polymers.Biomacromolecules10(11), 3015–3022 (2009).
  • Martínez-Osorio H , Juarez-CampoM, DieboldYet al.: Genetically engineered elastin-like polymer as a substratum to culture cells from the ocular surface.Curr. Eye Res.34, 48–56 (2009).
  • Caves JM , KumarVA, MartínezAWet al.: The use of microfiber composites of elastin-like protein matrix reinforced with synthetic collagen in the design of vascular grafts.Biomaterials31, 7175–7182 (2010).
  • Barbosa JS , RibeiroA, TesteraAMet al.: Development of biomimetic chitosan-based hydrogels using an elastin-like polymer.Adv. Eng. Mater.12, B37–B44 (2010).
  • Ozturk N , GirottiA, KoseGTet al.: Dynamic cell culturing and its application to micropatterned, elastin-like protein-modified poly(N-isopropylacrylamide) scaffolds.Biomaterials30(29), 5417–5426 (2009).
  • Chow D , NunaleeML, LimDWet al.: Peptide-based biopolymers in biomedicine and biotechnology.Mater. Sci. Eng. R Rep.62, 125–155 (2008).
  • Araújo R , SilvaC, MachadoRet al.: Proteolytic enzyme engineering: a tool for wool.Biomacromolecules10, 1655–1661 (2009).
  • Nath N , ChilkotiA: Creating ‘smart’ surfaces using stimuli responsive polymers.Adv. Mater.14, 1243–1247 (2002).
  • Nath N , HyunJ, MaHet al.: Surface engineering strategies for control of protein and cell interactions.Surf. Sci.570, 98–110 (2004).
  • Wada A , MieM, AizawaMet al.: Design and construction of glutamine binding proteins with a self-adhering capability to unmodified hydrophobic surfaces as reagentless fluorescence sensing devices.J. Am. Chem. Soc.125, 16228–16234 (2003).
  • Elloumi I , KobayashiR, FunabashiHet al.: Construction of epidermal growth factor fusion protein with cell adhesive activity.Biomaterials27, 3451–3458 (2006).
  • Costa RR , CustodioCA, TesteraAMet al.: Stimuli-responsive thin coatings using elastin-like polymers for biomedical applications.Adv. Funct. Mater.19, 3210–3218 (2009).
  • Aparicio C , SalvagniE, WernerMet al.: Biomimetic treatments on dental implants for immediate loading applications.J. Med. Device.3, 027555 (2009).
  • Li D , XiaYN: Electrospinning of nanofibers: reinventing the wheel?Adv. Mater.16, 1151–1170 (2004).
  • Huang L , McMillanRA, ApkarianRPet al.: Generation of synthetic elastin-mimetic small diameter fibers and fiber networks.Macromolecules33, 2989–2997 (2000).
  • Fahmi A , PietschT, BryszewskaMet al.: Fabrication of CdSe nanofibers with potential for biomedical applications.Adv. Funct. Mater.20, 1011–1018 (2010).
  • Massodi I , BidwellGL, RaucherD: Evaluation of cell penetrating peptides fused to elastin-like polypeptide for drug delivery.J. Control. Release108, 396–408 (2005).
  • Bidwell GL , DavisAN, RaucherD: Targeting a c-Myc inhibitory polypeptide to specific intracellular compartments using cell penetrating peptides.J. Control. Release135, 2–10 (2009).
  • Furgeson DY , DreherMR, ChilkotiA: Structural optimization of a ‘smart’ doxorubicin–polypeptide conjugate for thermally targeted delivery to solid tumors.J. Control. Release110, 362–369 (2006).
  • Dreher MR , LiuWG, MichelichCRet al.: Thermal cycling enhances the accumulation of a temperature-sensitive biopolymer in solid tumors.Cancer Res.67, 4418–4424 (2007).
  • Herrero-Vanrell R , RincónAC, AlonsoMet al.: Self-assembled particles of an elastin-like polymer as vehicles for controlled drug release.J. Control. Release102, 113–122 (2005).
  • Bessa PC , MachadoR, NurnbergerSet al.: Thermoresponsive self-assembled elastin-based nanoparticles for delivery of BMPs.J. Control. Release142, 312–318 (2010).
  • Machado R , RibeiroAJ, PadrãoJet al.: Exploiting the sequence of naturally occurring elastin: construction, production and characterization of a recombinant thermoplastic protein based polymer.J. Nano Res.6, 133–145 (2009).
  • Wu YQ , MacKayJA, McDanielJRet al.: Fabrication of elastin-like polypeptide nanoparticles for drug delivery by electrospraying.Biomacromolecules10, 19–24 (2009).
  • Dreher MR , RaucherD, BaluNet al.: Evaluation of an elastin-like polypeptide-doxorubicin conjugate for cancer therapy.J. Control. Release91, 31–43 (2003).
  • Carlsen A , LecommandouxS: Self-assembly of polypeptide-based block copolymer amphiphiles.Curr. Opin. Colloid Interface Sci.14, 329–339 (2009).
  • MacKay JA , ChenMN, McDanielJRet al.: Self-assembling chimeric polypeptide-doxorubicin conjugate nanoparticles that abolish tumours after a single injection.Nature Mater.8, 993–999 (2009).
  • Dreher MR , SimnickAJ, FischerKet al.: Temperature triggered self-assembly of polypeptides into multivalent spherical micelles.J. Am. Chem. Soc.130, 687–694 (2008).
  • Kim W , ThevenotJ, IbarboureEet al.: Self-assembly of thermally responsive amphiphilic diblock copolypeptides into spherical micellar nanoparticles.Angew. Chem. Int. Ed. Engl.49, 4257–4260 (2010).
  • Sallach RE , WeiM, BiswasNet al.: Micelle density regulated by a reversible switch of protein secondary structure.J. Am. Chem. Soc.128, 12014–12019 (2006).
  • Rodríguez-Cabello JC , RegueraJ, GirottiAet al.: Genetic engineering of protein-based polymers: the example of elastin-like polymers.Adv. Polym. Sci.200, 119–167 (2006).
  • Alonso M , RebotoV, GuiscardoLet al.: Novel photoresponsive p-phenylazobenzene derivative of an elastin-like polymer with enhanced control of azobenzene content and without pH sensitiveness.Macromolecules34, 8072–8077 (2001).
  • Aacute;lvarez-Rodríguez R , AlonsoM, GirottiAet al.: One-pot synthesis of pH and temperature sensitive gold clusters mediated by a recombinant elastin-like polymer.Eur. Polym. J.46, 643–650 (2010).
  • Aacute;lvarez-Rodríguez R , AriasFJ, SantosMet al.: Gold tailored photosensitive elastin-like polymer: synthesis of temperature, pH and UV-vis sensitive probes.Macromol. Rapid Commun.31, 568–573 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.