678
Views
1
CrossRef citations to date
0
Altmetric
Review

Advancing Nonviral Gene Delivery: Lipid- and Surfactant-Based Nanoparticle Design Strategies

, , , , &
Pages 1103-1127 | Published online: 27 Sep 2010

Bibliography

  • Douglas KL : Toward development of artificial viruses for gene therapy: a comparative evaluation of viral and non-viral transfection.Biotechnol. Prog.24, 871–883 (2008).
  • Peterson CY , ShaterianA, BorboaAKet al.: The noninvasive, quantitative, in vivo assessment of adenoviral-mediated gene delivery in skin wound biomaterials.Biomaterials30, 6788–6793 (2009).
  • Waehler R , RussellSJ, CurielDT: Engineering targeted viral vectors for gene therapy.Nat. Rev. Genet.8, 573–587 (2007).
  • Eto Y , GaoJQ, SekiguchiFet al.: PEGylated adenovirus vectors containing RGD peptides on the tip of PEG show high transduction efficiency and antibody evasion ability.J. Gene Med.7, 604–612 (2005).
  • Wolff J , LewisDL, HerweijerH, HeggeJ, HagstromJ: Non-viral approaches for gene transfer.Acta Myologica24, 202–208 (2005).
  • Wettig DS , VerrallER, FoldvariM: Gemini surfactants: a new family of building blocks for non-viral gene delivery systems.Curr. Gene Ther.8, 9–23 (2008).
  • Oba M , AoyagiK, MiyataKet al.: Polyplex micelles with cyclic RGD peptide ligands and disulfide cross-links directing to the enhanced transfection via controlled intracellular trafficking.Mol. Pharm.5, 1080–1092 (2008).
  • Nemoto Y , ZhouYM, TatsumiE, NakayamaY: Photoinduced cross-linking of star vector for improvement of gene transfer efficiency.Bioconjug. Chem.19, 2513–2519 (2008).
  • Wettig SD , BadeaI, DonkuruM, VerrallRE, FoldvariM: Structural and transfection properties of amine-substituted gemini surfactant-based nanoparticles.J. Gene Med.9, 649–658 (2007).
  • Elsabahy M , WazenN, Bayó-PuxanNet al.: Delivery of nucleic acids through the controlled disassembly of multifunctional nanocomplexes.Adv. Funct. Mater.19, 3862–3867 (2009).
  • Räty JK , LeschHP, WirthT, Ylä-HerttualaS: Improving safety of gene therapy.Curr. Drug Saf.3, 46–53 (2008).
  • Harrington KJ , NuttingCM, PandhaHS: Gene therapy for head and neck cancer.Cancer Metastasis Rev.24, 147–164 (2005).
  • Abadie J , BlouinV, GuigandL, WyersM, CherelY: Recombinant adeno-associated virus type 2 mediates highly efficient gene transfer in regenerating rat skeletal muscle.Gene Ther.9, 1037–1043 (2002).
  • Cartier N , Hacein-Bey-AbinaS, BartholomaeCCet al.: Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy.Science326, 818–823 (2009).
  • Felgner PL , GadekTR, HolmMet al.: Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure.Proc. Natl Acad. Sci. USA84, 7413–7417 (1987).
  • Verma IM , SomiaN: Gene therapy-promises, problems and prospects.Nature389, 239–242 (1997).
  • Lehrman S : Virus treatment questioned after gene therapy death.Nature401, 517–518 (1999).
  • Marshall E : Gene therapy: What to do when clear success comes with an unclear risk?Science 298, 510–511 (2002).
  • Li SD , HuangL: Non-viral is superior to viral gene delivery.J. Control Release123, 181–183 (2007).
  • Li SD , HuangL: Gene therapy progress and prospects: non-viral gene therapy by systemic delivery.Gene Therapy13, 1313–1319 (2006).
  • Domashenko A , GuptaS, CotsarelisG: Efficient delivery of transgenes to human hair follicle progenitor cells using topical lipoplex.Nat. Biotechnol.18, 420–423 (2000).
  • Wolff JA , RozemaDB: Breaking the bonds: non-viral vectors become chemically dynamic.Mol. Ther.16, 8–15 (2008).
  • Park TG , JeongJH, KimSW: Current status of polymeric gene delivery systems.Adv. Drug Deliv. Rev.58, 467–486 (2006).
  • Meyer M , WagnerE: pH-responsive shielding of non-viral gene vectors.Expert Opin. Drug Deliv.3, 563–571 (2006).
  • Wettig SD , WangC, VerrallRE, FoldvariM: Thermodynamic and aggregation properties of aza- and imino-substituted gemini surfactants designed for gene delivery.Phys. Chem. Chem. Phys.9, 871–877 (2007).
  • Saunders M , TaylorKM, CraigDQ, PalinK, RobsonH: High sensitivity differential scanning calorimetry study of DNA-cationic liposome complexes.Pharm. Res.24, 1954–1961 (2007).
  • Zhang HW , ZhangL, SunX, DiaoS, ZhangZR: Assembly of plasmid DNA into liposomes after condensation by cationic lipid in anionic detergent solution.Biotechnol. Lett.27, 1701–1705 (2005).
  • Kim WJ , YockmanJW, LeeM, JeongJH, KimYH, KimSW: Soluble Flt-1 gene delivery using PEI-g-PEG-RGD conjugate for anti-angiogenesis.J. Control Release106, 224–234 (2005).
  • Elfinger M , MauckschC, RudolphC: Characterization of lactoferrin as a targeting ligand for nonviral gene delivery to airway epithelial cells.Biomaterials28, 3448–3455 (2007).
  • Dinh AT , PangarkarC, TheofanousT, MitragotriS: Understanding intracellular transport processes pertinent to synthetic gene delivery via stochastic simulations and sensitivity analyses.Biophys. J.92, 831–846 (2007).
  • Nishikawa M , HuangL: Nonviral vectors in the new millennium: delivery barriers in gene transfer.Hum. Gene Ther.12, 861–870 (2001).
  • Elouahabi A , RuysschaertJM: Formation and intracellular trafficking of lipoplexes and polyplexes.Mol. Ther.11, 336–347 (2005).
  • Sigismund S , WoelkT, PuriCet al.: Clathrin-independent endocytosis of ubiquitinated cargos.Proc. Natl Acad. Sci. USA102, 2760–2765 (2005).
  • Mayor S , PaganoRE: Pathways of clathrin-independent endocytosis.Nat. Rev. Mol. Cell. Biol.8, 603–612 (2007).
  • Zabner J , FasbenderAJ, MoningerT, PoellingerKA, WelshMJ: Cellular and molecular barriers to gene transfer by a cationic lipid.J. Biol. Chem.270, 18997–19007 (1995).
  • Ruponen M , ArkkoS, UrttiA, ReinisaloM, RantaVP: Intracellular DNA release and elimination correlate poorly with transgene expression after non-viral transfection.J. Control Release136, 226–231 (2009).
  • Doyle SR , ChanCK: Differential intracellular distribution of DNA complexed with polyethylenimine (PEI) and PEI-polyarginine PTD influences exogenous gene expression within live COS-7 cells.Genet. Vaccines Ther.5, 11 (2007).
  • Friend DS , PapahadjopoulosD, DebsRJ: Endocytosis and intracellular processing accompanying transfection mediated by cationic liposomes.Biochim. Biophys. Acta1278, 41–50 (1996).
  • Wrobel I , CollinsD: Fusion of cationic liposomes with mammalian cells occurs after endocytosis.Biochim. Biophys. Acta1235, 296–304 (1995).
  • Jeong JH , LeeM, KimWJet al.: Anti-GAD antibody targeted non-viral gene delivery to islet beta cells.J. Control Release107, 562–570 (2005).
  • Huang R-Q , Qu Y-H, Ke W-L, Zhu J-H, Pei Y-Y, Jiang C: Efficient gene delivery targeted to the brain using a transferrin-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. FASEB J.21, 1117–1125 (2007).
  • Torchilin VP : Recent approaches to intracellular delivery of drugs and DNA and organelle targeting.Annu. Rev. Biomed. Eng.8, 343–375 (2006).
  • Goryacheva YA , VekshinaOM, YashinVA, KimYA: Fusion and endocytosis of anionic liposomes with Ehrlich ascitic carcinoma cells.Bull. Exp. Biol. Med.140, 733–735 (2005).
  • Savva M , ChenP, AljaberiA, SelviB, SpeliosM: in vitro lipofection with novel asymmetric series of 1,2-dialkoylamidopropane-based cytofectins containing single symmetric bis-(2-dimethylaminoethane) polar headgroups.Bioconjug. Chem.16, 1411–1422 (2005).
  • Smith JG , WalzembRL, GermanaBJ: Liposomes as agents of DNA transfer.Biochim. Biophys. Acta1154, 327–340 (1993).
  • Moore NM , SheppardCL, Sakiyama‑ElbertSE: Characterization of a multifunctional PEG-based gene delivery system containing nuclear localization signals and endosomal escape peptides.Acta Biomater5, 854–864 (2009).
  • Bhattacharya S , BajajA: Advances in gene delivery through molecular design of cationic lipids.Chem. Commun.31, 4632–4656 (2009).
  • Martin B , SainlosM, AissaouiAet al.: The design of cationic lipids for gene delivery.Curr. Pharm. Des.11, 375–394 (2005).
  • Midoux P , PichonC, YaouancJJ, JaffresPA: Chemical vectors for gene delivery: a current review on polymers, peptides and lipids containing histidine or imidazole as nucleic acids carriers.Br. J. Pharmacol.157, 166–178 (2009).
  • Horobin RW , WeissigV: A QSAR-modeling perspective on cationic transfection lipids. 1. Predicting efficiency and understanding mechanisms.J. Gene Med.7, 1023–1034 (2005).
  • Barry ME , Pinto-GonzalezD, OrsonFM, McKenzieGJ, PetryGR, BarryMA: Role of endogenous endonucleases and tissue site in transfection and CpG-mediated immune activation after naked DNA injection.Hum. Gene Ther.10, 2461–2480 (1999).
  • Singh M , AriattiM: A cationic cytofectin with long spacer mediates favourable transfection in transformed human epithelial cells.Int. J. Pharm.309, 189–198 (2006).
  • Kawakami S , HaradaA, SakanakaKet al.: in vivo gene transfection via intravitreal injection of cationic liposome/plasmid DNA complexes in rabbits.Int. J. Pharm.278, 255–262 (2004).
  • Simoes S , SlepushkinV, PiresP, GasparR, de Lima MP, Duzgunes N: Mechanisms of gene transfer mediated by lipoplexes associated with targeting ligands or pH-sensitive peptides. Gene Ther.6, 1798–1807 (1999).
  • Zuidam NJ , Hirsch-LernerD, MarguliesS, BarenholzY: Lamellarity of cationic liposomes and mode of preparation of lipoplexes affect transfection efficiency.Biochim. Biophys. Acta1419, 207–220 (1999).
  • Zuhorn IS , BakowskyU, PolushkinEet al.: Nonbilayer phase of lipoplex-membrane mixture determines endosomal escape of genetic cargo and transfection efficiency.Mol. Ther.11, 801–810 (2005).
  • Wetzer B , BykG, FredericMet al.: Reducible cationic lipids for gene transfer.Biochem. J.356, 747–756 (2001).
  • Byk G , WetzerB, FredericMet al.: Reduction-sensitive lipopolyamines as a novel nonviral gene delivery system for modulated release of DNA with improved transgene expression.J. Med. Chem.43, 4377–4387 (2000).
  • Ewert KK , EvansHM, ZidovskaA, BouxseinNF, AhmadA, SafinyaCR: A columnar phase of dendritic lipid-based cationic liposome-DNA complexes for gene delivery: hexagonally ordered cylindrical micelles embedded in a DNA honeycomb lattice.J. Am. Chem. Soc.128, 3998–4006 (2006).
  • Ewert K , AhmadA, EvansHM, SchmidtHW, SafinyaCR: Efficient synthesis and cell-transfection properties of a new multivalent cationic lipid for nonviral gene delivery.J. Med. Chem.45, 5023–5029 (2002).
  • Wasungu L , StuartMC, ScarzelloM, EngbertsJB, HoekstraD: Lipoplexes formed from sugar-based gemini surfactants undergo a lamellar-to-micellar phase transition at acidic pH. Evidence for a non-inverted membrane-destabilizing hexagonal phase of lipoplexes.Biochim. Biophys. Acta1758, 1677–1684 (2006).
  • Bombelli C , GiansantiL, LucianiP, ManciniG: Gemini surfactant based carriers in gene and drug delivery.Curr. Med. Chem.16, 171–183 (2009).
  • Wasungu L , ScarzelloM, van Dam G et al.: Transfection mediated by pH-sensitive sugar-based gemini surfactants; potential for in vivo gene therapy applications. J. Mol. Med.84, 774–784 (2006).
  • Yoshioka T , YoshidaS, KurosakiTet al.: Cationic liposomes-mediated plasmid DNA delivery in murine hepatitis induced by carbon tetrachloride.J. Liposome Res.19, 1–7 (2009).
  • Wu Q , MahendranR, EsuvaranathanK: Nonviral cytokine gene therapy on an orthotopic bladder cancer model.Clin. Cancer Res.9, 4522–4528 (2003).
  • Hu Y , LiK, WangL, YinS, ZhangZ, ZhangY: Pegylated immuno-lipopolyplexes: a novel non-viral gene delivery system for liver cancer therapy.J. Control Release144(1), 75–81 (2010).
  • Kurosaki T , KitaharaT, TeshimaMet al.: Exploitation of de novo helper-lipids for effective gene delivery.J Pharm Pharm Sci11, 56–67 (2008).
  • Prata CA , LiY, LuoD, McIntoshTJ, BarthelemyP, GrinstaffMW: A new helper phospholipid for gene delivery.Chem. Commun. (Camb.)1566–1568 (2008).
  • Zhao YZ , LuoYK, LiangHDet al.: Comparing transfection efficiency and safety for antisense oligodeoxyribonucleotide between phospholipids-based microbubbles and liposomes.J. Drug Target14, 687–693 (2006).
  • Tranchant I , ThompsonB, NicolazziC, MignetN, SchermanD: Physicochemical optimisation of plasmid delivery by cationic lipids.J. Gene Med.6, S24–S35 (2004).
  • Choi WJ , KimJK, ChoiSH, ParkJS, AhnWS, KimCK: Low toxicity of cationic lipid-based emulsion for gene transfer.Biomaterials25, 5893–5903 (2004).
  • Gruneich JA , PriceA, ZhuJ, DiamondSL: Cationic corticosteroid for nonviral gene delivery.Gene Ther.11, 668–674 (2004).
  • Kim A , LeeEH, ChoiSH, KimCK: in vitro and in vivo transfection efficiency of a novel ultradeformable cationic liposome.Biomaterials25, 305–313 (2004).
  • Gilot D , MiramonML, BenvegnuTet al.: Cationic lipids derived from glycine betaine promote efficient and non-toxic gene transfection in cultured hepatocytes.J. Gene Med.4, 415–427 (2002).
  • Koynova R , WangL, MacDonaldRC: An intracellular lamellar-nonlamellar phase transition rationalizes the superior performance of some cationic lipid transfection agents.Proc. Natl Acad. Sci. USA103, 14373–14378 (2006).
  • Dobbs W , HeinrichB, BourgogneCet al.: Mesomorphic imidazolium salts: new vectors for efficient siRNA transfection.J. Am. Chem. Soc.131, 13338–13346 (2009).
  • Cui L , ChenD, ZhuL: Conformation transformation determined by different self-assembled phases in a DNA complex with cationic polyhedral oligomeric silsesquioxane lipid.ACS Nano2, 921–927 (2008).
  • Hafez IM , MaurerN, CullisPR: On the mechanism whereby cationic lipids promote intracellular delivery of polynucleic acids.Gene Ther.8, 1188–1196 (2001).
  • Hara T , LiuF, LiuD, HuangL: Emulsion formulations as a vector for gene delivery in vitro and in vivo.Adv. Drug Deliv. Rev.24, 265–271 (1997).
  • Ciani L , RistoriS, SalvatiA, CalamaiL, MartiniG: DOTAP/DOPE and DC-Chol/DOPE lipoplexes for gene delivery: zeta potential measurements and electron spin resonance spectra.Biochim. Biophys. Acta1664, 70–79 (2004).
  • Zhi D , ZhangS, WangB, ZhaoY, YangB, YuS: Transfection efficiency of cationic lipids with different hydrophobic domains in gene delivery.Bioconjug. Chem.21(4), 563–577 (2010).
  • Kikuchi A , AokiY, SugayaSet al.: Development of novel cationic liposomes for efficient gene transfer into peritoneal disseminated tumor.Hum. Gene Ther.10, 947–955 (1999).
  • Kerner M , MeyuhasO, Hirsch-LernerD, RosenLJ, MinZ, BarenholzY: Interplay in lipoplexes between type of pDNA promoter and lipid composition determines transfection efficiency of human growth hormone in NIH3T3 cells in culture.Biochim. Biophys. Acta1532, 128–136 (2001).
  • Zuidam NJ , BarenholzY: Characterization of DNA-lipid complexes commonly used for gene delivery.Int. J. Pharm.183, 43–46 (1999).
  • Kim TW , ChungH, KwonIC, SungHC, JeongSY: Optimization of lipid composition in cationic emulsion as in vitro and in vivo transfection agents.Pharm. Res.18, 54–60 (2001).
  • Sheikh M , FeigJ, GeeB, LiS, SavvaM: in vitro lipofection with novel series of symmetric 1,3-dialkoylamidopropane-based cationic surfactants containing single primary and tertiary amine polar head groups.Chem. Phys. Lipids124, 49–61 (2003).
  • Aljaberi A , ChenP, SavvaM: Synthesis, in vitro transfection activity and physicochemical characterization of novel N,N‘-diacyl-1,2-diaminopropyl-3-carbamoyl-(dimethylaminoethane) amphiphilic derivatives.Chem Phys Lipids133, 135–149 (2005).
  • Kearns MD , DonkorAM, SavvaM: Structure-transfection activity studies of novel cationic cholesterol-based amphiphiles.Mol. Pharm.5, 128–139 (2008).
  • Maitani Y , IgarashiS, SatoM, HattoriY: Cationic liposome (DC-Chol/DOPE=1:2) and a modified ethanol injection method to prepare liposomes, increased gene expression.Int. J. Pharm.342, 33–39 (2007).
  • Kaneshiro TL , WangX, LuZR: Synthesis, characterization, and gene delivery of poly-L-lysine octa(3-aminopropyl)silsesquioxane dendrimers: nanoglobular drug carriers with precisely defined molecular architectures.Mol. Pharm.4, 759–768 (2007).
  • Tarwadi , Jazayeri JA, Prankerd RJ, Pouton CW: Preparation and in vitro evaluation of novel lipopeptide transfection agents for efficient gene delivery. Bioconjug. Chem.19, 940–950 (2008).
  • Perrie Y , GregoriadisG: Liposome-entrapped plasmid DNA: characterisation studies.Biochim. Biophys. Acta1475, 125–132 (2000).
  • Heinze M , BrezesinskiG, DobnerB, LangnerA: Novel cationic lipids based on malonic acid amides backbone: transfection efficacy and cell toxicity properties.Bioconjug. Chem.21, 696–708 (2010).
  • Yu RZ , GearyRS, LeedsJMet al.: Pharmacokinetics and tissue disposition in monkeys of an antisense oligonucleotide inhibitor of Ha-ras encapsulated in stealth liposomes.Pharm. Res.16, 1309–1315 (1999).
  • Ruponen M , HonkakoskiP, TammiM, UrttiA: Cell-surface glycosaminoglycans inhibit cation-mediated gene transfer.J. Gene Med.6, 405–414 (2004).
  • Martin-Herranz A , AhmadA, EvansHM, EwertK, SchulzeU, SafinyaCR: Surface functionalized cationic lipid-DNA complexes for gene delivery: PEGylated lamellar complexes exhibit distinct DNA-DNA interaction regimes.Biophys. J.86, 1160–1168 (2004).
  • Li W , HuangZ, MacKayJA, GrubeS, SzokaFC: Low-pH-sensitive poly(ethylene glycol) (PEG)-stabilized plasmid nanolipoparticles: effects of PEG chain length, lipid composition and assembly conditions on gene delivery.J. Gene Med.7, 67–79 (2005).
  • Munkonge FM , AminV, HydeSCet al.: Identification and functional characterization of cytoplasmic determinants of plasmid DNA nuclear import.J. Biol. Chem.284, 26978–26987 (2009).
  • Ma B , ZhangS, JiangH, ZhaoB, LvH: Lipoplex morphologies and their influences on transfection efficiency in gene delivery.J. Control Release123, 184–194 (2007).
  • Sakuragi M , KusukiS, HamadaEet al.: Supramolecular structures of benzyl amine derivate/DNA complexes explored with synchrotron small angle X-ray scattering at SPring-8.J. Phys. Conf. Ser.184, 1–6 (2009).
  • Koynova R , WangL, TarahovskyY, MacDonaldRC: Lipid phase control of DNA delivery.Bioconjug. Chem.16, 1335–1339 (2005).
  • Xu Z , ChenL, ZhangZ, GuW, LiY: “Intelligent” nanoassembly for gene delivery: in vitro transfection and the possible mechanism.Int. J. Pharm.383, 271–276 (2010).
  • Mevel M , NeveuC, GoncalvesCet al.: Novel neutral imidazole-lipophosphoramides for transfection assays.Chem. Commun. (Camb.)3124–3126 (2008).
  • Solodin I , BrownCS, BrunoMSet al.: A novel series of amphiphilic imidazolinium compounds for in vitro and in vivo gene delivery.Biochemistry34, 13537–13544 (1995).
  • Chowdhury EH , AkaikeT: High performance DNA nano-carriers of carbonate apatite: multiple factors in regulation of particle synthesis and transfection efficiency.Int. J. Nanomedicine2, 101–106 (2007).
  • Moore NM , SheppardCL, BarbourTR, Sakiyama-ElbertSE: The effect of endosomal escape peptides on in vitro gene delivery of polyethylene glycol-based vehicles.J. Gene Med.10, 1134–1149 (2008).
  • Hoekstra D , RejmanJ, WasunguL, ShiF, ZuhornI: Gene delivery by cationic lipids: in and out of an endosome.Biochem. Soc. Trans.35, 68–71 (2007).
  • Tarahovsky YS , KoynovaR, MacDonaldRC: DNA release from lipoplexes by anionic lipids: correlation with lipid mesomorphism, interfacial curvature, and membrane fusion.Biophys. J.87, 1054–1064 (2004).
  • Tarahovsky Y , KoynovaR, MacDonaldRC: DNA release from lipoplexes by anionic lipids: correlation with lipid mesomorphism, interfacial curvature, and membrane fusion.Biophys. J.87, 1054–1064 (2004).
  • Oishi M , KataokaK, NagasakiY: pH-responsive three-layered PEGylated polyplex micelle based on a lactosylated ABC triblock copolymer as a targetable and endosome-disruptive nonviral gene vector.Bioconjug. Chem.17, 677–688 (2006).
  • Walker SA , KennedyMT, ZasadzinskiJA: Encapsulation of bilayer vesicles by self-assembly.Nature (London)387, 61–64 (1997).
  • Kim TH , JiangHL, NahJW, ChoMH, AkaikeT, ChoCS: Receptor-mediated gene delivery using chemically modified chitosan.Biomed. Mater.2, S95–S100 (2007).
  • Chen CP , KimJS, LiuDet al.: Synthetic PEGylated glycoproteins and their utility in gene delivery.Bioconjug. Chem.18, 371–378 (2007).
  • Hofland HEJ , MassonC, IginlaSet al.: Folate-targeted gene transfer in vivo.Molecular Therapy5, 739–744 (2002).
  • Funhoff AM , van Nostrum CF, Lok MC, Fretz MM, Crommelin DJ, Hennink WE: Poly(3-guanidinopropyl methacrylate): a novel cationic polymer for gene delivery. Bioconjug. Chem.15, 1212–1220 (2004).
  • Shangguan T , Cabral-LillyD, PurandareUet al.: A novel N-acyl phosphatidylethanolamine-containing delivery vehicle for spermine-condensed plasmid DNA.Gene Ther.7, 769–783 (2000).
  • Affleck DG , YuL, BullDA, BaileySH, KimSW: Augmentation of myocardial transfection using TerplexDNA: a novel gene delivery system.Gene Ther.8, 349–353 (2001).
  • Yu L , SuhH, KohJJ, KimSW: Systemic administration of TerplexDNA system: pharmacokinetics and gene expression.Pharm. Res.18, 1277–1283 (2001).
  • Nakamura K , KuramotoY, MukaiH, KawakamiS, HiguchiY, HashidaM: Enhanced gene transfection in macrophages by histidine-conjugated mannosylated cationic liposomes.Biol. Pharm. Bull.32, 1628–1631 (2009).
  • You J , KamihiraM, IijimaS: Enhancement of transfection efficiency using ligand-modified lipid vesicles.J. Ferment. Bioeng.85, 525–528 (1998).
  • Anwer K , KaoG, RollandA, DriessenWH, SullivanSM: Peptide-mediated gene transfer of cationic lipid/plasmid DNA complexes to endothelial cells.J. Drug Target12, 215–221 (2004).
  • Sakae M , ItoT, YoshiharaCet al.: Highly efficient in vivo gene transfection by plasmid/PEI complexes coated by anionic PEG derivatives bearing carboxyl groups and RGD peptide.Biomed. Pharmacother.62, 448–453 (2008).
  • Reddy BS , BanerjeeR: 17β-estradiol-associated stealth-liposomal delivery of anticancer gene to breast cancer cells.Angew. Chem. Int. Ed. Engl.44, 6723–6727 (2005).
  • Mukherjee A , PrasadTK, RaoNM, BanerjeeR: Haloperidol-associated stealth liposomes: a potent carrier for delivering genes to human breast cancer cells.J. Biol. Chem.280, 15619–15627 (2005).
  • Wang M , LowikDW, MillerAD, ThanouM: Targeting the urokinase plasminogen activator receptor with synthetic self-assembly nanoparticles.Bioconjug. Chem.20, 32–40 (2009).
  • Opanasopit P , RojanarataT, ApirakaramwongA, NgawhirunpatT, RuktanonchaiU: Nuclear localization signal peptides enhance transfection efficiency of chitosan/DNA complexes.Int. J. Pharm.382, 291–295 (2009).
  • Nagasaki T , KawazuT, TachibanaT, TamagakiS, ShinkaiS: Enhanced nuclear import and transfection efficiency of plasmid DNA using streptavidin-fused importin-beta.J. Control Release103, 199–207 (2005).
  • Shen Y , PengH, PanSet al.: Interaction of DNA/nuclear protein/polycation and the terplexes for gene delivery.Nanotechnology21, 045102 (2010).
  • Amiji MM : Polymeric gene delivery: principles and applications (1st Edition). Boca Raton FL (Ed.). Taylor & Francis, CRC Press (2007).
  • Miller AM , DeanDA: Tissue-specific and transcription factor-mediated nuclear entry of DNA.Adv. Drug Deliv. Rev.61, 603–613 (2009).
  • Kalderon D , RichardsonWD, MarkhamAF, SmithAE: Sequence requirements for nuclear location of simian virus 40 large-T antigen.Nature311, 33–38 (1984).
  • Jans DA , ChanCK, HuebnerS: Signals mediating nuclear targeting and their regulation: application in drug delivery.Med. Res. Rev.18, 189–223 (1998).
  • Nagasaki T , MyohojiT, TachibanaT, FutakiS, TamagakiS: Can nuclear localization signals enhance nuclear localization of plasmid DNA?Bioconjug. Chem.14, 282–286 (2003).
  • Kurihara D , AkitaH, KudoA, MasudaT, FutakiS, HarashimaH: Effect of polyethyleneglycol spacer on the binding properties of nuclear localization signal-modified liposomes to isolated nucleus.Biol. Pharm. Bull.32, 1303–1306 (2009).
  • Michael WM , ChoiM, DreyfussG: A nuclear export signal in hnRNP A1: a signal-mediated, temperature-dependent nuclear protein export pathway.Cell. Mol. Biol. Lett.83, 415–422 (1995).
  • Ling Y , SmithAJ, MorganGT: A sequence motif conserved in diverse nuclear proteins identifies a protein interaction domain utilised for nuclear targeting by human TFIIS.Nucleic Acids Res.34, 2219–2229 (2006).
  • Wagstaff KM , JansDA: Nucleocytoplasmic transport of DNA: enhancing non-viral gene transfer.Biochem. J.406, 185–202 (2007).
  • MA K , Min-XinH, QIYet al.: PAMAM-triamcinolone acetonide conjugate as a nucleus-targeting gene carrier for enhanced transfer activity.Biomaterials30, 6109–6118 (2009).
  • De Laporte L , Cruz Rea J, Shea LD: Design of modular non-viral gene therapy vectors. Biomaterials27, 947–954 (2006).
  • Vaysse L , HarbottleR, BiggerB, BergauA, TolmachovO, CoutelleC: Development of a self-assembling nuclear targeting vector system based on the tetracycline repressor protein.J. Biol. Chem.279, 5555–5564 (2004).
  • Byrnes CK , NassPH, DuncanMD, HarmonJW: A nuclear targeting peptide, m9, improves transfection efficiency in fibroblasts.J. Surg. Res.108, 85–90 (2002).
  • Goncalves C , ArdourelMY, DecovilleMet al.: An optimized extended DNA kappa B site that enhances plasmid DNA nuclear import and gene expression.J. Gene Med.11, 401–411 (2009).
  • Shea LD , HouchinTL: Modular design of non-viral vectors with bioactive components.Trends Biotechnol.22, 429–431 (2004).
  • Cruz MT d, Simões S, Lima MCd: Improving lipoplex-mediated gene transfer into C6 glioma cells and primary neurons. Exp. Neurol.187, 65–75 (2004).
  • Hatakeyama H , ItoE, AkitaHet al.: A pH-sensitive fusogenic peptide facilitates endosomal escape and greatly enhances the gene silencing of siRNA-containing nanoparticles in vitro and in vivo.J. Control Release139, 127–132 (2009).
  • Sasaki K , KogureK, ChakiSet al.: An artificial virus-like nano carrier system: enhanced endosomal escape of nanoparticles via synergistic action of pH-sensitive fusogenic peptide derivatives.Anal. Bioanal. Chem.391, 2717–2727 (2008).
  • Zhang X , CollinsL, FabreJW: A powerful cooperative interaction between a fusogenic peptide and lipofectamine for the enhancement of receptor-targeted, non-viral gene delivery via integrin receptors.J. Gene Med.3, 560–568 (2001).
  • Badea I , VerrallR, Baca-EstradaMet al.: in vivo cutaneous interferon-γ gene delivery using novel dicationic (gemini) surfactant-plasmid complexes.J. Gene Med.7, 1200–1214 (2005).
  • Mohammadabadi MR , El-TamimyM, GianelloR, MozafariMR: Supramolecular assemblies of zwitterionic nanoliposome-polynucleotide complexes as gene transfer vectors: Nanolipoplex formulation and in vitro characterisation.J. Liposome Res.19(2), 105–115 (2009).
  • Narang AS , ThomaL, MillerDD, MahatoRI: Cationic lipids with increased DNA binding affinity for nonviral gene transfer in dividing and nondividing cells.Bioconjug. Chem.16, 156–168 (2005).
  • Koumbi D , ClementJC, SideratouZ, YaouancJJ, LoukopoulosD, KolliaP: Factors mediating lipofection potency of a series of cationic phosphonolipids in human cell lines.Biochim. Biophys. Acta1760, 1151–1159 (2006).
  • Mortazavi SM , MohammadabadiMR, Khosravi-DaraniK, MozafariMR: Preparation of liposomal gene therapy vectors by a scalable method without using volatile solvents or detergents.J. Biotechnol.129, 604–613 (2007).
  • Staggs DR , BurtonDW, DeftosLJ: Importance of liposome complexing volume in transfection optimization.Biotechniques21, 792, 784, 796, 798 (1996).
  • Sternberg B , HongK, ZhengW, PapahadjopoulosD: Ultrastructural characterization of cationic liposome-DNA complexes showing enhanced stability in serum and high transfection activity in vivo.Biochim. Biophys. Acta1375, 23–35 (1998).
  • Gaucheron J , SantaellaC, VierlingP: in vitro gene transfer with a novel galactosylated spermine bolaamphiphile.Bioconjug. Chem.12, 569–575 (2001).
  • Caracciolo G , CaminitiR, DigmanMA, GrattonE, SanchezS: Efficient escape from endosomes determines the superior efficiency of multicomponent lipoplexes.J. Phys. Chem. B113, 4995–4997 (2009).
  • Hufnagel H , HakimP, LimaA, HollfelderF: Fluid phase endocytosis contributes to transfection of DNA by PEI-25.Mol. Ther.17, 1411–1417 (2009).
  • Rejman J , ConeseM, HoekstraD: Gene transfer by means of lipo- and polyplexes: role of clathrin and caveolae-mediated endocytosis.J. Liposome Res.16, 237–247 (2006).
  • Stebelska K , WyrozumskaP, GubernatorJ, SikorskiAF: Higly fusogenic cationic liposomes transiently permeabilize the plasma membrane of HeLa cells.Cell. Mol. Biol. Lett.12, 39–50 (2007).
  • Rea JC , BarronAE, SheaLD: Peptide-mediated lipofection is governed by lipoplex physical properties and the density of surface-displayed amines.J. Pharm. Sci.97, 4794–4806 (2008).
  • Kneuer C , EhrhardtC, BakowskyHet al.: The influence of physicochemical parameters on the efficacy of non-viral DNA transfection complexes: a comparative study.J. Nanosci. Nanotechnol.6, 2776–2782 (2006).
  • Rejman J , OberleV, ZuhornIS, HoekstraD: Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis.Biochem. J.377, 159–169 (2004).
  • Ross PC , HuiSW: Lipoplex size is a major determinant of in vitro lipofection efficiency.Gene Ther.6, 651–659 (1999).
  • Hassani Z , LemkineGF, ErbacherPet al.: Lipid-mediated siRNA delivery down-regulates exogenous gene expression in the mouse brain at picomolar levels.J. Gene Med.7, 198–207 (2005).
  • Resina S , PrevotP, ThierryAR: Physico-chemical characteristics of lipoplexes influence cell uptake mechanisms and transfection efficacy.PLoS One4, e6058 (2009).
  • Margineanu A , De Feyter S, Melnikov S et al.: Complexation of lipofectamine and cholesterol-modified DNA sequences studied by single-molecule fluorescence techniques. Biomacromolecules8, 3382–3392 (2007).
  • Higuchi Y , KawakamiS, FumotoS, YamashitaF, HashidaM: Effect of the particle size of galactosylated lipoplex on hepatocyte-selective gene transfection after intraportal administration.Biol. Pharm. Bull.29, 1521–1523 (2006).
  • Mehier-Humbert S , BettingerT, YanF, GuyRH: Plasma membrane poration induced by ultrasound exposure: implication for drug delivery.J. Control Release104, 213–222 (2005).
  • Ghonaim HM , AhmedOAA, PourzandC, BlagbroughIS: Varying the chain length in N4,N9-diacyl spermines: non-viral lipopolyamine vectors for efficient plasmid DNA formulation.Mol. Pharmaceutics5, 1111–1121 (2008).
  • Berezhna S , SchaeferS, HeintzmannRet al.: New effects in polynucleotide release from cationic lipid carriers revealed by confocal imaging, fluorescence cross-correlation spectroscopy and single particle tracking.Biochim. Biophys. Acta1669, 193–207 (2005).
  • Klein E , CiobanuM, KleinJet al.: “HFP” fluorinated cationic lipids for enhanced lipoplex stability and gene delivery.Bioconjug. Chem.21, 360–371 (2010).
  • Badea I , WettigS, VerrallR, FoldvariM: Topical non-invasive gene delivery using gemini nanoparticles in interferon-g-deficient mice.Eur. J. Pharm. Biopharm.65, 414–422 (2007).
  • Kreiss P , CameronB, RangaraRet al.: Plasmid DNA size does not affect the physicochemical properties of lipoplexes but modulates gene transfer efficiency.Nucleic Acids Res.27, 3792–3798 (1999).
  • Yin W , XiangP, LiQ: Investigations of the effect of DNA size in transient transfection assay using dual luciferase system.Anal. Biochem.346, 289–294 (2005).
  • McLenachan S , SarseroJP, IoannouPA: Flow-cytometric analysis of mouse embryonic stem cell lipofection using small and large DNA constructs.Genomics89, 708–720 (2007).
  • Madeira C , LouraLM, PrietoM, FedorovA, Aires-BarrosMR: Effect of ionic strength and presence of serum on lipoplexes structure monitorized by FRET.BMC Biotechnol.8, 20 (2008).
  • Fisicaro E , CompariC, DuceE, DonofrioG, Rozycka-RoszakB, WozniakE: Biologically active bisquaternary ammonium chlorides: physico-chemical properties of long chain amphiphiles and their evaluation as non-viral vectors for gene delivery.Biochim. Biophys. Acta1722, 224–233 (2005).
  • Srinivasan C , BurgessDJ: Optimization and characterization of anionic lipoplexes for gene delivery.J. Control Release136, 62–70 (2009).
  • Khiati S , PierreN, AndriamanarivoSet al.: Anionic nucleotide-lipids for in vitro DNA transfection.Bioconjug. Chem.20, 1765–1772 (2009).
  • Caracciolo G , PozziD, CaminitiR: Enhanced transfection efficiency of multicomponent lipoplexes in the regime of optimal membrane charge density.J. Phys. Chem. B112, 11298–11304 (2008).
  • Caracciolo G , PozziD, CaminitiRet al.: Transfection efficiency boost by designer multicomponent lipoplexes.Biochim. Biophys. Acta1768, 2280–2292 (2007).
  • Liang H , HarriesD, WongGC: Polymorphism of DNA-anionic liposome complexes reveals hierarchy of ion-mediated interactions.Proc. Natl Acad. Sci. USA102, 11173–11178 (2005).
  • Audouy S , HoekstraD: Cationic lipid-mediated transfection in vitro and in vivo (review).Mol. Membr. Biol.18, 129–143 (2001).
  • Israelachvili JN : Intermolecular and Surface Forces: with Applications to Colloidal and Biological Systems. Academic Press, UK (1992).
  • Tresset G : The multiple faces of self-assembled lipidic systems:PMC Biophys2, 3 (2009).
  • Gonzalez-Perez A , SchmutzM, WatonG, RomeroMJ, KrafftMP: Isolated fluid polyhedral vesicles.J. Am. Chem. Soc.129, 756–757 (2007).
  • Caracciolo G , PozziD, AmenitschH, CaminitiR: Multicomponent cationic lipid-DNA complex formation: role of lipid mixing.Langmuir21, 11582–11587 (2005).
  • Chittimalla C , Zammut-ItalianoL, ZuberG, BehrJP: Monomolecular DNA nanoparticles for intravenous delivery of genes.J. Am. Chem. Soc.127, 11436–11441 (2005).
  • Blessing T , RemyJS, BehrJP: Monomolecular collapse of plasmid DNA into stable virus-like particles.Proc. Natl Acad. Sci. USA95, 1427–1431 (1998).
  • Zuhorn IS , KalicharanR, HoekstraD: Lipoplex-mediated transfection of mammalian cells occurs through the cholesterol-dependent clathrin-mediated pathway of endocytosis.J. Biol. Chem.277, 18021–18028 (2002).
  • Xu Y , HuiSW, FrederikP, SzokaFC Jr: Physicochemical characterization and purification of cationic lipoplexes. Biophys. J.77, 341–353 (1999).
  • Sternberg B , SorgiFL, HuangL: New structures in complex formation between DNA and cationic liposomes visualized by freeze-fracture electron microscopy.FEBS Lett.356, 361–366 (1994).
  • Peng SF , SuCJ, WeiMCet al.: Effects of the nanostructure of dendrimer/DNA complexes on their endocytosis and gene expression.Biomaterials21, 5660–5670 (2010).
  • Ayoubi MA , ZinchenkoAA, PhilippovaOE, KhokhlovAR, YoshikawaK: Visualization of different pathways of DNA release from interpolyelectrolyte complex.J. Phys. Chem. B111, 8373–8378 (2007).
  • Rodriguez-Pulido A , OrtegaF, LlorcaO, AicartE, JunqueraE: A physicochemical characterization of the interaction between DC-Chol/DOPE cationic liposomes and DNA.J. Phys. Chem. B112, 12555–12565 (2008).
  • Frerix A , SchonewaldM, GeilenkirchenP, MullerM, KulaMR, HubbuchJ: Exploitation of the coil-globule plasmid DNA transition induced by small changes in temperature, pH salt, and poly(ethylene glycol) compositions for directed partitioning in aqueous two-phase systems.Langmuir22, 4282–4290 (2006).
  • Elkady AS , ZhdanovRI: Dicationic DEGA-based lipid systems for gene transfer and delivery: supramolecular structure and activity. In: Nanocarrier Technologies Frontiers of Nanotherapy (Mozafari MR Ed.). Springer, The Netherlands 175–190 (2006).
  • Ito T , Iida-TanakaN, KoyamaY: Efficient in vivo gene transfection by stable DNA/PEI complexes coated by hyaluronic acid.J. Drug Target16, 276–281 (2008).
  • Ewert K , SlackNL, AhmadAet al.: Cationic lipid-DNA complexes for gene therapy: Understanding the relationship between complex structure and gene delivery pathways at the molecular level.Curr. Med. Chem.11, 133–149 (2004).
  • Lin AJ , SlackNL, AhmadA, GeorgeCX, SamuelCE, SafinyaCR: Three-dimensional imaging of lipid gene-carriers: membrane charge density controls universal transfection behavior in lamellar cationic liposome-DNA complexes.Biophys. J.84, 3307–3316 (2003).
  • Uhríková D , ZajacI, DubnickováMet al.: Interaction of gemini surfactants butane-1,4-diyl-bis(alkyldimethylammonium bromide) with DNA.Colloids Surf. B. Biointerfaces42, 59–68 (2005).
  • Uhrikova D , HanulovaM, FunariSS, LackoI, DevinskyF, BalgavyP: The structure of DNA-DLPC-cationic gemini surfactant aggregates: a small angle synchrotron X-ray diffraction study.Biophys Chem111, 197–204 (2004).
  • Mirska D , SchirmerK, FunariSS, LangnerA, DobnerB, BrezesinskiG: Biophysical and biochemical properties of a binary lipid mixture for DNA transfection.Colloids Surf. B Biointerfaces40, 51–59 (2005).
  • Foldvari M , BadeaI, WettigS, VerrallR, BagonluriM: Structural characterization of novel gemini non-viral DNA delivery systems for cutaneous gene therapy.J. Exp. Nanosci.1, 165–176 (2006).
  • Foldvari M , WettigS, BadeaI, VerrallR, BagonluriM: Dicationic gemini surfactant gene delivery complexes contain cubic-lamellar mixed polymorphic phase. Presented at: NSTI Nanotech 2006, NSTI Nanotechnology Conference and Trade Show, Boston, MA, United States, 7–11 May, 2, 400–403 (2006).
  • Sun P , ZhongM, ShiX, LiZ: Anionic LPD complexes for gene delivery to macrophage: preparation, characterization and transfection in vitro.J. Drug Target16, 668–678 (2008).
  • Burke RS , PunSH: Extracellular barriers to in vivo PEI and PEGylated PEI polyplex-mediated gene delivery to the liver.Bioconjug. Chem.19, 693–704 (2008).
  • McNeil SE , VangalaA, BramwellVW, HansonPJ, PerrieY: Lipoplexes formulation and optimisation: in vitro transfection studies reveal no correlation with in vivo vaccination studies.Curr. Drug Deliv.7, 175–187 (2010).
  • Huang YC , RiddleK, RiceKG, MooneyDJ: Long-term in vivo gene expression via delivery of PEI-DNA condensates from porous polymer scaffolds.Hum. Gene Ther.16, 609–617 (2005).
  • Neves SS , Sarmento-RibeiroAB, SimoesSP, Pedroso de Lima MC: Transfection of oral cancer cells mediated by transferrin-associated lipoplexes: mechanisms of cell death induced by herpes simplex virus thymidine kinase/ganciclovir therapy. Biochim. Biophys. Acta1758, 1703–1712 (2006).
  • Pfeiffer T , WallichM, SandmannW, SchraderJ, GodeckeA: Lipoplex gene transfer of inducible nitric oxide synthase inhibits the reactive intimal hyperplasia after expanded polytetrafluoroethylene bypass grafting.J. Vasc. Surg.43, 1021–1027 (2006).
  • Morton TJ , FurstW, Griensven Mv, Redl H: Controlled release of substances bound to fibrin-anchors or of DNA. Drug Delivery16, 102–107 (2009).
  • Lisziewicz J , CalarotaSA, LoriF: The potential of topical DNA vaccines adjuvanted by cytokines.Expert Opin. Biol. Ther.7, 1563–1574 (2007).
  • Alcon VL , Baca-EstradaME, PotterA, BabiukLA, KumarP, FoldvariM: Biphasic lipid vesicles as a subcutaneous delivery system for protein antigens and CpG oligonucleotides.Curr. Drug Deliv.3, 129–135 (2006).
  • Babiuk S , Baca-EstradaME, MiddletonDM, HeckerR, BabiukLA, FoldvariM: Biphasic lipid vesicles (Biphasix) enhance the adjuvanticity of CpG oligonucleotides following systemic and mucosal administration.Curr. Drug Deliv.1, 9–15 (2004).
  • Babiuk S , Baca-EstradaME, PontarolloR, FoldvariM: Topical delivery of plasmid DNA using biphasic lipid vesicles (Biphasix).J. Pharm. Pharmacol.54, 1609–1614 (2002).
  • Williams JA , CarnesAE, HodgsonCP: Plasmid DNA vaccine vector design: impact on efficacy, safety and upstream production.Biotechnol. Adv.27, 353–370 (2009).
  • Kutzler MA , WeinerDB: DNA vaccines: ready for prime time?Nat. Rev. Genet.9, 776–788 (2008).
  • Anwer K , BarnesMN, FewellJ, LewisDH, AlvarezRD: Phase-I clinical trial of IL-12 plasmid/lipopolymer complexes for the treatment of recurrent ovarian cancer.Gene Ther.17, 360–369 (2010).
  • Cui Z , MumperRJ: Topical immunization using nanoengineered genetic vaccines.J. Control Release81, 173–184 (2002).
  • Hafez IM , AnsellS, CullisPR: Tunable pH-sensitive liposomes composed of mixtures of cationic and anionic lipids.Biophys. J.79, 1438–1446 (2000).
  • Zhang S , XuY, WangB, QiaoW, LiuD, LiZ: Cationic compounds used in lipoplexes and polyplexes for gene delivery.J. Control Release100, 165–180 (2004).
  • Alexander MY , AkhurstRJ: Liposome-medicated gene transfer and expression via the skin.Hum. Mol. Genet.4, 2279–2285 (1995).
  • Horiguchi Y , LarchianWA, KaplinskyR, FairWR, HestonWD: Intravesical liposome-mediated interleukin-2 gene therapy in orthotopic murine bladder cancer model.Gene Ther.7, 844–851 (2000).
  • Subramanian M , HolopainenJM, PaukkuT, ErikssonO, HuhtaniemiI, KinnunenPKJ: Characterization of three novel cationic lipids as liposomal complexes with DNA.Biochim. Biophys. Acta1466, 289–305 (2000).
  • Gao X , HuangL: A novel cationic liposome reagent for efficient transfection of mammalian cells.Biochem Biophys Res Commun179, 280–285 (1991).
  • Castano S , DelordB, FevrierA, Lehn J-M, Lehn P, Desbat B: Brewster angle microscopy and PMIRRAS study of DNA interactions with BGTC, a cationic lipid used for gene transfer. Langmuir24, 9598–9606 (2008).
  • Vigneron JP , OudrhiriN, FauquetMet al.: Guanidinium-cholesterol cationic lipids: efficient vectors for the transfection of eukaryotic cells.Proc. Natl Acad. Sci. USA93, 9682–9686 (1996).
  • Gaucheron J , WongT, WongKF, MaurerN, CullisPR: Synthesis and properties of novel tetraalkyl cationic lipids.Bioconj. Chem.13, 671–675 (2002).
  • Bhattacharya S , DeS, GeorgeSK: Synthesis and vesicle formation from novel pseudoglyceryl dimeric lipids. Evidence of formation of widely different membrane organizations with exceptional thermotropic properties.Chem. Comm. (Camb.)2287–2288 (1997).
  • Boomer JA , ThompsonDH, SullivanSM: Formation of plasmid-based transfection complexes with an acid-labile cationic lipid: characterization of in vitro and in vivo gene transfer.Pharm. Res.19, 1292–1301 (2002).
  • Baccaglini L , Shamsul Hoque AT, Wellner RB et al.: Cationic liposome-mediated gene transfer to rat salivary epithelial cells in vitro and in vivo.J. Gene Med.3, 82–90 (2001).
  • Sola B , StaedelC, RemyJS, BahrA, BehrJP: Lipospermine-mediated gene transfer technique into murine cultured cortical cells.J. Neurosci. Methods71, 183–186 (1997).
  • Baca-Estrada ME , FoldvariM, SniderM, Van Drunen Littel-Van Den Hurk S, Babiuk LA: Effect of IL-4 and IL-12 liposomal formulations on the induction of immune response to bovine herpesvirus type-1 glycoprotein D. Vaccine15, 1753–1760 (1997).
  • Remy JS , SirlinC, VierlingP, BehrJP: Gene transfer with a series of lipophilic DNA-binding molecules.Bioconjug. Chem.5, 647–654 (1994).
  • Sen J , ChaudhuriA: Design, syntheses, and transfection biology of novel non-cholesterol-based guanidinylated cationic lipids.J. Med. Chem.48, 812–820 (2005).
  • Fielden ML , PerrinC, KremerAet al.: Sugar-based tertiary amino gemini surfactants with a vesicle-to-micelle transition in the endosomal pH range mediate efficient transfection in vitro.Eur. J. Biochem.268, 1269–1279 (2001).
  • Kirby AJ , CamilleriP, EngbertsJBet al.: Gemini surfactants: new synthetic vectors for gene transfection.Angew. Chem. Int. Ed. Engl.42, 1448–1457 (2003).
  • McGregor C , PerrinC, MonckM, CamilleriP, KirbyAJ: Rational approaches to the design of cationic gemini surfactants for gene delivery.J. Am. Chem. Soc.123, 6215–6220 (2001).
  • Hatakeyama H , AkitaH, KogureKet al.: Development of a novel systemic gene delivery system for cancer therapy with a tumor-specific cleavable PEG-lipid.Gene Ther.14, 68–77 (2007).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.