285
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Ceria-Engineered Nanomaterial Distribution In, and Clearance From, Blood: Size Matters

, , , , &
Pages 95-110 | Published online: 22 Dec 2011

References

  • Batrakova EV , KabanovAV. Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J. Control. Release130(2), 98–106 (2008).
  • Kanwar J r, Mahidhara G, Kanwar RK. Recent advances in nanoneurology for drug delivery to the brain. Curr. Nanosci.5(4), 441–448 (2009).
  • Karakoti AS , Monteiro-RiviereNA, AggarwalRet al. Nanoceria as antioxidant: synthesis and biomedical applications. JOM 60(3), 33–37 (2008).
  • Tarnuzzer RW , ColonJ, PatilS, SealS. Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage. Nano Lett.5(12), 2573–2577 (2005).
  • Niu J , AzferA, Rogers Lm, Wang X, Kolattukudy PE. Cardioprotective effects of cerium oxide nanoparticles in a transgenic murine model of cardiomyopathy. Cardiovasc. Res.73(3), 549–559 (2007).
  • Xia T , KovochichM, LiongMet al. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2(10), 2121–2134 (2008).
  • Schubert D , DarguschR, RaitanoJ, ChanSW. Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem. Biophys. Res. Comm.342(1), 86–91 (2006).
  • Singh N , CohenCA, RzigalinskiBA. Treatment of neurodegenerative disorders with radical nanomedicine. Ann. NY Acad. Sci.1122, 219–230 (2007).
  • D‘Angelo B , SantucciS, BenedettiEet al. Cerium oxide nanoparticles trigger neuronal survival in a human Alzheimer disease model by modulating BDNF pathway. Curr. Nanosci. 5(2), 167–176 (2009).
  • Chen J , PatilS, SealS, McginnisJF. Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nat. Nanotechnol.1(2), 142–150 (2006).
  • Das M , PatilS, BhargavaNet al. Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons. Biomaterials 28(10), 1918–1925 (2007).
  • Park EJ , ChoiJ, ParkYK, ParkK. Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicology.245(1–2), 90–100 (2008).
  • Thill A , ZeyonsO, SpallaOet al. Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ. Sci. Technol. 40(19), 6151–6156 (2006).
  • Brunner TJ , WickP, ManserPet al.: In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ. Sci. Technol.40(14), 4374–4381 (2006).
  • Eom HJ , ChoiJ. Oxidative stress of CeO2 nanoparticles via p38-Nrf-2 signaling pathway in human bronchial epithelial cell, Beas-2B. Toxicol. Lett.187(2), 77–83 (2009).
  • Lin W , HuangYW, ZhouXD, MaY. Toxicity of cerium oxide nanoparticles in human lung cancer cells. Int. J. Toxicol.25(6), 451–457 (2006).
  • Park E-JC , Wan-Seob A, Jeong J et al. Induction of inflammatory responses in mice treated with cerium oxide nanoparticles by intratracheal instillation. J. Health Sci.56(4), 387–396 (2010).
  • Yokel RA , FlorenceRL, UnrineJMet al. Biodistribution and oxidative stress effects of a systemically-introduced commercial ceria engineered nanomaterial. Nanotoxicology 3(4), 234–248 (2009).
  • Riviere JE . Pharmacokinetics of nanomaterials: an overview of carbon nanotubes, fullerenes and quantum dots. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.1(1), 26–34 (2009).
  • Hardas SS , ButterfieldDA, SultanaRet al. Brain distribution and toxicological evaluation of a systemically delivered engineered nanoscale ceria. Toxicol. Sci. 116(2), 562–576 (2010).
  • Riddick TM . Control of colloidal stability through zeta potential. Livingston Publishing Co., Wynnewood, PA, USA, 320–331 (1968).
  • Gaur U , SahooSK, DeTK, GhoshPC, MaitraA, GhoshPK. Biodistribution of fluoresceinated dextran using novel nanoparticles evading reticuloendothelial system. Int. J. Pharm.202(1–2), 1–10 (2000).
  • Niidome T , YamagataM, OkamotoYet al. PEG-modified gold nanorods with a stealth character for in vivo applications. J. Control. Release 114(3), 343–347 (2006).
  • Cao T , YangT, GaoY, YangY, HuH, LiF. Water-soluble NaYF4:Yb/Er upconversion nanophosphors: synthesis, characteristics and application in bioimaging. Inorg. Chem. Commun.13(3), 392–394 (2010).
  • Frasca G , GazeauF, WilhelmC. Formation of a three-dimensional multicellular assembly using magnetic patterning. Langmuir25(4), 2348–2354 (2009).
  • Pallem VL , StretzHA, WellsMJ. Evaluating aggregation of gold nanoparticles and humic substances using fluorescence spectroscopy. Environ. Sci. Technol.43(19), 7531–7535 (2009).
  • Brewer SH , GlommWR, JohnsonMC, KnagMK, FranzenS. Probing BSA binding to citrate-coated gold nanoparticles and surfaces. Langmuir21(20), 9303–9307 (2005).
  • Masui T , HiraiH, ImanakaN, AdachiG, SakataT, MoriH. Synthesis of cerium oxide nanoparticles by hydrothermal crystallization with citric acid. J. Mat. Sci. Lett.21(6), 489–491 (2002).
  • Pan C , ZhangD, ShiL. CTAB assisted hydrothermal synthesis, controlled conversion and CO oxidation properties of CeO2 nanoplates, nanotubes, and nanorods. J. Solid State Chem.181(6), 1298–1306 (2008).
  • Mai H-X , Sun L-D, Zhang Y-W et al. Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes. J. Phys. Chem. B109(51), 24380–24385 (2005).
  • Wu Q , ZhangF, XiaoPet al. Great influence of anions for controllable synthesis of CeO2 nanostructures: From nanorods to nanocubes. J. Phys. Chem. C 112(44), 17076–17080 (2008).
  • Zhang F , JinQ, Chan S-W. Ceria nanoparticles: size, size distribution, and shape. J. Appl. Phys.95(8), 4319–4326 (2004).
  • Mandzy N , GrulkeE, DruffelT. Breakage of TiO2 agglomerates in electrostatically stabilized aqueous dispersions. Powder Technol.160(2), 121–126 (2005).
  • Bjondahl K . Differences in liver weight, mortality in cerium-treated mice and 144Ce levels in blood, liver, urine and faeces at various intervals after treatment with nafenopin and pregnenolone 16-alpha-carbonitrile (PCN). Med. Biol.54(6), 454–460 (1976).
  • Moskalev YI . Experiments on distribution of Ce 144. Med. Radiol. (Mosk)4(5), 52–58 (1959).
  • Takada K , FujitaM. Effects of DTPA on the excretion and tissue distribution of 144Ce administered subcutaneously, intramuscularly and intravenously in rats. J. Radiat. Res. (Tokyo)14(2), 187–197 (1973).
  • Limbach LK , LiY, GrassRNet al. Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations. Environ. Sci. Technol. 39(23), 9370–9376 (2005).
  • Rzigalinski BA , DanelisonI, StrawnET, CohenCA, LiangC. Nanoparticles for cell engineering – a radical concept. In: Nanotechnologies for the Life Sciences, Kumar Cssr (Eds). Wiley-VCH, Hoboken, NJ, USA, 361–387 (2006).
  • Rzigalinski BA , MeehanK, DavisRM, XuY, MilesWC, CohenCA. Radical nanomedicine. Nanomedicine (Lond.)1(4), 399–412 (2006).
  • Hirst SM , KarakotiAS, TylerRD, SriranganathanN, SealS, ReillyCM. Anti-inflammatory properties of cerium oxide nanoparticles. Small5(24), 2848–2856 (2009).
  • He XA , ZhangHF, MaYHet al. Lung deposition and extrapulmonary translocation of nano-ceria after intratracheal instillation. Nanotechnology 21(28), 285103 (2010).
  • Nakamura Y , TsumuraY, TonogaiY, ShibataT, ItoY. Differences in behavior among the chlorides of seven rare earth elements administered intravenously to rats. Fundam. Appl. Toxicol.37(2), 106–116 (1997).
  • Geiser M , Rothen-RutishauserB, KappNet al. Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ. Health. Perspect. 113(11), 1555–1560 (2005).
  • Rothen-Rutishauser BM , SchurchS, HaenniB, KappN, GehrP. Interaction of fine particles and nanoparticles with red blood cells visualized with advanced microscopic techniques. Environ. Sci. Technol.40(14), 4353–4359 (2006).
  • Wang J , ZhouG, ChenCet al. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol. Lett. 168(2), 176–185 (2007).
  • Yang RS , ChangLW, WuJPet al. Persistent tissue kinetics and redistribution of nanoparticles, quantum dot 705, in mice: ICP-MS quantitative assessment. Environ. Health. Perspect. 115(9), 1339–1343 (2007).
  • Al-Jamal WT , Al-JamalKT, CakebreadA, HalketJM, KostarelosK. Blood circulation and tissue biodistribution of lipid – quantum dot (L-QD) hybrid vesicles intravenously administered in mice. Bioconjug. Chem.20(9), 1696–1702 (2009).
  • Fischer HC , LiuL, PangKS, ChanWCW. Pharmacokinetics of nanoscale quantum dots. in vivo distribution, sequestration, and clearance in the rat Adv. Func Mat.16(10), 1299–1305 (2006).
  • Li M , Al-JamalKT, KostarelosK, ReinekeJ. Physiologically based pharmacokinetic modeling of nanoparticles. ACS Nano4(11), 6303–6317 (2010).
  • Owens DE , PeppasNA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm.307(1), 93–102 (2006).
  • Deng ZJ , MortimerG, SchillerT, MusumeciA, MartinD, MinchinRF. Differential plasma protein binding to metal oxide nanoparticles. Nanotechnology20(45), 455101 (2009).
  • Uren RF , HoefnagelCA. Lymphoscintigraphy. In: Textbook of melanoma, Thompson JF, Morton DL, Kroon BBR (Eds). Martin Dunitz, NY, USA, 339–364 (2004).
  • Kim S , LimYT, SolteszEGet al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat. Biotechnol. 22(1), 93–97 (2004).
  • Rowland M , TozerTN. Clinical Pharmacokinetics and Pharmacodynamics: Concepts and Applications, 4th Edition. Wolters Kluwer, PA, USA (2011).
  • Distefano JJ . Noncompartmental vs. compartmental analysis: some bases for choice. Am. J. Physiol.243(1), R1–R6 (1982).
  • Yang RS , ChangLW, YangCS, LinP. Pharmacokinetics and physiologically-based pharmacokinetic modeling of nanoparticles. J. Nanosci. Nanotechnol.10(12), 8482–8490 (2010).
  • Li M , Al-JamalKT, KostarelosK, ReinekeJ. Physiologically based pharmacokinetic modeling of nanoparticles. ACS Nano4(11), 6303–6317 (2010).
  • Li SD , HuangL. Pharmacokinetics and biodistribution of nanoparticles. Mol. Pharm.5(4), 496–504 (2008).
  • Nyland JF , SilbergeldEK. A nanobiological approach to nanotoxicology. Hum. Exp. Toxicol.28(6–7), 393–400 (2009).
  • Lee HA , LeavensTL, MasonSE, Monteiro-RiviereNA, RiviereJE. Comparison of quantum dot biodistribution with a blood-flow-limited physiologically based pharmacokinetic model. Nano Lett.9(2), 794–799 (2009).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.