689
Views
0
CrossRef citations to date
0
Altmetric
Review

Surface-Enhanced Raman Scattering-Active Nanostructures and Strategies for Bioassays

, , , , , , & show all
Pages 1463-1480 | Published online: 25 Oct 2011

Bibliography

  • Lyon LA , KeatingCD, FoxAPet al. Raman spectroscopy. Anal. Chem. 70(12), 341R–361R (1998).
  • Graham D , MallinderBJ, WhitcombeD, WatsonND, SmithWE. Simple multiplex genotyping by surface-enhanced resonance Raman scattering. Anal. Chem.74(5), 1069–1074 (2002).
  • Volkan M , StokesDL, TuanVD. Surface-enhanced Raman of dopamine and neurotransmitters using sol-gel substrates and polymer-coated fiber-optic probes. Appl. Spectrosc.54(12), 1842–1848 (2000).
  • Kneipp K , KneippH, ItzkanI, DasariRR, FeldMS. Ultrasensitive chemical analysis by Raman spectroscopy. Chem. Rev.99(10), 2957–2976 (1999).
  • Weaver MJ , ZouSZ, ChanHYH. The new interfacial ubiquity of surface-enhanced Raman spectroscopy. Anal. Chem.72(1), 38A–47A (2000).
  • Bishnoi SW , RozellCJ, LevinCSet al. All-optical nanoscale pH meter. Nano Lett. 6(8), 1687–1692 (2006).
  • Fleischmann M , HendraPJ, McQuillaAJ. Raman-spectra from electrode surfaces. J. Chem. Soc-Chem. Commun. (3), 80–81 (1973).
  • Fleischmann M , HendraPJ, McQuillaAJ. Raman-spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett.26(2), 163–166 (1974).
  • Jeanmaire D , Van Duyne R. Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem.84(1), 1–20 (1977).
  • Albrecht M , CreightonJ. Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc.99(15), 5215–5217 (1977).
  • Stacy A , Van Duyne R. Surface enhanced Raman and resonance Raman spectroscopy in a nonaqueous electrochemical environment: Tris (2, 2 0-bipyridine) ruthenium (II) adsorbed on silver from acetonitrile. Chem. Phys. Lett.102, 365–370 (1983).
  • Hildebrandt P , StockburgerM. Surface-enhanced resonance Raman spectroscopy of rhodamine 6G adsorbed on colloidal silver. J. Phys. Chem.88(24), 5935–5944 (1984).
  • Moskovits M , DiLellaD, MaynardK. Surface Raman spectroscopy of a number of cyclic aromatic molecules adsorbed on silver: selection rules and molecular reorientation. Langmuir4(1), 67–76 (1988).
  • Knoll W . Interfaces and thin films as seen by bound electromagnetic waves. Ann. Rev. Phys. Chem.49(1), 569–638 (1998).
  • Otto A . The ‘chemical‘(electronic) contribution to surface-enhanced Raman scattering. J. Raman Spectrosc.36(6–7), 497–509 (2005).
  • Chu P , MillsD. Electromagnetic response of nanosphere pairs: collective plasmon resonances, enhanced fields, and laser-induced forces. Phys. Rev. B77(4), 45416.
  • Campion A , KambhampatiP. Surface-enhanced Raman scattering. Chem. Soc. Rev.27(4), 241–250 (1998).
  • Laserna JJ , CampigliaAD, WinefordnerJD. Surface-enhanced Raman spectrometry on a silver-coated filter-paper substrate. Anal. Chim. Acta208(1–2), 21–30 (1988).
  • Neddersen J , ChumanovG, CottonTM. Laser-ablation of metals – a new emthod for preparing SERS active colloids. Appl. Spectrosc.47(12), 1959–1964 (1993).
  • Cabalin LM , LasernaJJ. Fast spatially-resolved surface-enhanced Raman-spectrometry on a silver-coated filter-paper using charge-coupled-device detection. Anal. Chim. Acta310(2), 337–345 (1995).
  • Stiles PL , DieringerJA, ShahNC, Van Duyne RR. Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem.1, 601–626 (2008).
  • Lin XM , CuiY, XuYH, RenB, TianZQ. Surface-enhanced Raman spectroscopy: substrate-related issues. Anal. Bioanal. Chem.394(7), 1729–1745 (2009).
  • Hering K , CiallaD, AckermannKet al. SERS: a versatile tool in chemical and biochemical diagnostics. Anal. Bioanal. Chem. 390(1), 113–124 (2008).
  • Aroca R . Surface-enhanced vibrational spectroscopy. Wiley, NY, USA (2006).
  • Schlücker S . SERS microscopy: nanoparticle probes and biomedical applications. Chem. Phys. Chem.10(9 10), 1344–1354 (2009).
  • Kneipp J , WittigB, BohrH, KneippK. Surface-enhanced Raman scattering: a new optical probe in molecular biophysics and biomedicine. Theoretic. Chem. Acco.125(3–6), 319–327 (2010).
  • Alvarez-Puebla RA , Liz-MarzanLM. SERS-based diagnosis and biodetection. Small6(5), 604–610 (2010).
  • Yao G , WangL, WuYRet al. FloDots: luminescent nanoparticles. Anal. Bioanal. Chem. 385(3), 518–524 (2006).
  • Medintz I , UyedaH, GoldmanE, MattoussiH. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater.4(6), 435–446 (2005).
  • Michalet X , PinaudF, BentolilaLet al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709), 538–544 (2005).
  • Jain R , StrohM. Zooming in and out with quantum dots. Nat. Biotechnol.22(8), 959–960 (2004).
  • Kneipp K , WangY, KneippHet al. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78(9), 1667–1670 (1997).
  • Nie SM , EmerySR. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science275(5303), 1102–1106 (1997).
  • Doering WE , PiottiME, NatanMJ, FreemanRG. SERS as a foundation for nanoscale, optically detected biological labels. Adv. Mater.19(20), 3100–3108 (2007).
  • Kneipp K , KneippH, KarthaVBet al. Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS). Phys. Rev. E. 57(6), R6281–R6284 (1998).
  • Yonzon CR , HaynesCL, ZhangXY, WalshJT, Van Duyne RP. A glucose biosensor based on surface-enhanced Raman scattering: Improved partition layer, temporal stability, reversibility, and resistance to serum protein interference. Anal. Chem.76(1), 78–85 (2004).
  • Bao PD , HuangTQ, LiuXM, WuTQ. Surface-enhanced Raman spectroscopy of insect nuclear polyhedrosis virus. J. Raman Spectrosc.32(4), 227–230 (2001).
  • Kneipp J , KneippH, McLaughlinM, BrownD, KneippK. In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates. Nano Lett.6(10), 2225–2231 (2006).
  • Shafer-Peltier KE , HaynesCL, GlucksbergMR, Van Duyne RP. Toward a glucose biosensor based on surface-enhanced Raman scattering. J. Am. Chem. Soc.125(2), 588–593 (2003).
  • Li JF , HuangYF, DingYet al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464(7287), 392–395 (2010).
  • Stuart DA , YuenJM, LyandresNSOet al.: In vivo glucose measurement by surface-enhanced Raman spectroscopy. Anal. Chem.78(20), 7211–7215 (2006).
  • Lyandres O , ShahNC, YonzonCR, WalshJT, GlucksbergMR, Van Duyne RP. Real-time glucose sensing by surface-enhanced Raman spectroscopy in bovine plasma facilitated by a mixed decanethiol/mercaptohexanol partition layer. Anal. Chem.77(19), 6134–6139 (2005).
  • Grubisha D , LipertR, ParkH, DriskellJ, PorterM. Femtomolar detection of prostate-specific antigen: an immunoassay based on surface-enhanced Raman scattering and immunogold labels. Anal. Chem.75(21), 5936–5943 (2003).
  • Driskell J , KwartaK, LipertR, PorterM, NeillJ, RidpathJ. Low-level detection of viral pathogens by a surface-enhanced Raman scattering based immunoassay. Anal. Chem.77(19), 6147–6154 (2005).
  • Kim JH , KangH, KimSet al. Encoding peptide sequences with surface-enhanced Raman spectroscopic nanoparticles. Chem. Commun. 47(8), 2306–2308 (2011).
  • Isola NR , StokesDL, Vo-DinhT. Surface enhanced Raman gene probe for HIV detection. Anal. Chem.70(7), 1352–1356 (1998).
  • Graham D , MallinderBJ, SmithWE. Surface-enhanced resonance Raman scattering as a novel method of DNA discrimination. Angew. Chem. Int. Ed. Engl.39(6), 1061–1063 (2000).
  • Su X , ZhangJ, SunLet al. Composite organic-inorganic nanoparticles (COINs) with chemically encoded optical signatures. Nano Lett. 5(1), 49–54 (2005).
  • Jun BH , NohMS, KimJet al. Multifunctional silver-embedded magnetic nanoparticles as SERS nanoprobes and their applications. Small 6(1), 119–125 (2010).
  • Küstner B , GellnerM, SchützMet al. SERS labels for red laser excitation: silica encapsulated SAMs on tunable gold/silver nanoshells. Angew. Chem. Int. Ed. Engl. 48(11), 1950–1953 (2009).
  • Qian XM , PengXH, AnsariDOet al.: In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol.26(1), 83–90 (2008).
  • Cao YWC , JinRC, MirkinCA. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science297(5586), 1536–1540 (2002).
  • Ni J , LipertRJ, DawsonGB, PorterMD. Immunoassay readout method using extrinsic Raman labels adsorbed on immunogold colloids. Anal. Chem.71(21), 4903–4908 (1999).
  • Porter MD , LipertRJ, SiperkoLM, WangG, NarayananaR. SERS as a bioassay platform: fundamentals, design, and applications. Chem. Soc. Rev.37(5), 1001–1011 (2008).
  • Wang Y , LeeK, IrudayarajJ. SERS aptasensor from nanorod-nanoparticle junction for protein detection. Chem. Commun.46(4), 613–615 (2010).
  • Graham D , ThompsonDG, SmithWE, FauldsK. Control of enhanced Raman scattering using a DNA-based assembly process of dye-coded nanoparticles. Nat. Nanotechnol.3(9), 548–551 (2008).
  • Braun G , LeeSJ, DanteM, NguyenTQ, MoskovitsM, ReichN. Surface-enhanced Raman spectroscopy for DNA detection by nanoparticle assembly onto smooth metal films. J. Am. Chem. Soc.129(20), 6378–6379 (2007).
  • Fabris L , DanteM, BraunGet al. A heterogeneous PNA-based SERS method for DNA detection. J. Am. Chem. Soc. 129(19), 6086–6087 (2007).
  • Lim DK , JeonKS, KimHM, NamJM, SuhYD. Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nat. Mater.9(1), 60–67 (2010).
  • Doering W , NieS. Spectroscopic tags using dye-embedded nanoparticles and surface-enhanced Raman scattering. Anal. Chem.75(22), 6171–6176 (2003).
  • Mulvaney S , MusickM, KeatingC, NatanM. Glass-coated, analyte-tagged nanoparticles: a new tagging system based on detection with surface-enhanced Raman scattering. Langmuir19(11), 4784–4790 (2003).
  • Rohr T , CottonT, FanN, TarchaP. Immunoassay employing surface-enhanced Raman spectroscopy. Anal. Biochem.182(2), 388–398 (1989).
  • Schlücker S , KüstnerB, PungeA, BonfigR, MarxA, StrobelP. Immuno-Raman microspectroscopy: In situ detection of antigens in tissue specimens by surface-enhanced Raman scattering. J. Raman Spectrosc.37(7), 719–721 (2006).
  • Sun L , SungKB, DentingerCYet al. Composite organic-inorganic nanoparticles as Raman labels for tissue analysis. Nano Lett. 7(2), 351–356 (2007).
  • Yu KN , LeeSM, HanJYet al. Multiplex targeting, tracking, and imaging of apoptosis by fluorescent surface enhanced Raman spectroscopic dots. Bioconjugate Chem. 18(4), 1155–1162 (2007).
  • Kneipp J , KneippH, RiceWL, KneippK. Optical probes for biological applications based on surface-enhanced Raman scattering from indocyanine green on gold nanoparticles. Anal. Chem.77(8), 2381–2385 (2005).
  • Lin JQ , ChenR, FengSYet al. Rapid delivery of silver nanoparticles into living cells by electroporation for surface-enhanced Raman spectroscopy. Biosens Bioelectron. 25(2), 388–394 (2009).
  • Keren S , ZavaletaC, ChengZ, de la Zerda A, Gheysens O, Gambhir SS. Noninvasive molecular imaging of small living subjects using Raman spectroscopy. Proc. Natl Acad. Sci. USA105(15), 5844–5849 (2008).
  • Zavaleta CL , SmithBR, WaltonIet al. Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy. Proc. Natl Acad. Sci. USA 106(32), 13511–13516 (2009).
  • Cho SJ , AhnYH, MaitiKKet al. Combinatorial synthesis of a triphenylmethine library and their application in the development of Surface Enhanced Raman Scattering (SERS) probes. Chem. Commun. 46(5), 722–724 (2010).
  • Jackson JB , WestcottSL, HirschLR, WestJL, HalasNJ. Controlling the surface enhanced Raman effect via the nanoshell geometry. Appl. Phys. Lett.82(2), 257–259 (2003).
  • Schwartzberg AM , OshiroTY, ZhangJZ, HuserT, TalleyCE. Improving nanoprobes using surface-enhanced Raman scattering from 30-nm hollow gold particles. Anal. Chem.78(13), 4732–4736 (2006).
  • Lee S , ChonH, LeeMet al. Surface-enhanced Raman scattering imaging of HER2 cancer markers overexpressed in single MCF7 cells using antibody conjugated hollow gold nanospheres. Biosens Bioelectron. 24(7), 2260–2263 (2009).
  • Jeong D , ZhangY, MoskovitsM. Polarized surface enhanced Raman scattering from aligned silver nanowire rafts. J. Phys. Chem. B108(34), 12724–12728 (2004).
  • Park H , LeeS, ChenLet al. SERS imaging of HER2-overexpressed MCF7 cells using antibody-conjugated gold nanorods. Phys. Chem. Chem. Phys. 11(34), 7444–7449 (2009).
  • McLellan JM , LiZY, SiekkinenAR, XiaYN. The SERS activity of a supported Ag nanocube strongly depends on its orientation relative to laser polarization. Nano Lett.7(4), 1013–1017 (2007).
  • Kwon K , LeeKY, LeeYWet al. Controlled synthesis of icosahedral gold nanoparticles and their surface-enhanced Raman scattering property. J. Phys. Chem. C. 111(3), 1161–1165 (2007).
  • Xie J , ZhangQ, LeeJ, WangD. The synthesis of SERS-active gold nanoflower Tags for in vivo applications. ACS Nano2(12), 2473–2480 (2008).
  • Khoury CG , Vo-DinhT. Gold nanostars for surface-enhanced Raman scattering: synthesis, characterization and optimization. J. Phys. Chem. C.112(48), 18849–18859 (2008).
  • Rodriguez-Lorenzo L , Alvarez-PueblaRA, Pastoriza-SantosIet al. Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering. J. Am. Chem. Soc. 131(13), 4616–4618 (2009).
  • Imura K , OkamotoH, HossainMK, KitajimaM. Visualization of localized intense optical fields in single gold-nanoparticle assemblies and ultrasensitive Raman active sites. Nano Lett.6(10), 2173–2176 (2006).
  • Li WY , CamargoPHC, AuL, ZhangQ, RycengaM, XiaYN. Etching and dimerization: a simple and versatile route to dimers of silver nanospheres with a range of sizes. Angew. Chem. Int. Ed. Engl.49(1), 164–168 (2010).
  • Michaels AM , JiangJ, BrusL. Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single Rhodamine 6G molecules. J. Phys. Chem. B.104(50), 11965–11971 (2000).
  • McCabe AF , EliassonC, PrasathRAet al. SERRS labelled beads for multiplex detection. Faraday Discuss. 132, 303–308 (2006).
  • Liang Y , GongJ, HuangYet al. Biocompatible core-shell nanoparticle-based surface-enhanced Raman scattering probes for detection of DNA related to HIV gene using silica-coated magnetic nanoparticles as separation tools. Talanta 72(2), 443–449 (2007).
  • Chon H , LeeS, SonSW, OhCH, ChooJ. Highly sensitive immunoassay of lung cancer marker carcinoembryonic antigen using surface-enhanced Raman scattering of hallow gold nanospheres. Anal. Chem.81(8), 3029–3034 (2009).
  • von Maltzahn G , CentroneA, ParkJHet al. SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating. Adv. Mater. 21(31), 3175–3180 (2009).
  • Kim JH , KimJS, ChoiHet al. Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting. Anal. Chem. 78(19), 6967–6973 (2006).
  • Woo MA , LeeSM, KimGet al. Multiplex immunoassay using fluorescent-surface enhanced Raman spectroscopic dots for the detection of bronchioalveolar stem cells in murine lung. Anal. Chem. 81(3), 1008–1015 (2009).
  • Jun BH , KimG, BaekJet al. Magnetic field induced aggregation of nanoparticles for sensitive molecular detection. Phys. Chem. Chem. Phys. 13(16), 7298–7303 (2011).
  • Noh MS , JunBH, KimSet al. Magnetic surface-enhanced Raman spectroscopic (M-SERS) dots for the identification of bronchioalveolar stem cells in normal and lung cancer mice. Biomaterials 30 (23–24), 3915–3925 (2009).
  • Kennedy DC , DuguayDR, TayLLet al. SERS detection and boron delivery to cancer cells using carborane labelled nanoparticles. Chem. Commun. 44, 6750–6752 (2009).
  • Wang CG , ChenY, WangTT, MaZF, SuZM. Monodispersed gold nanorod-embedded silica particles as novel Raman labels for biosensing. Adv. Funct. Mater.18(2), 355–361 (2008).
  • Nikoobakht B , El-SayedMA. Surface-enhanced Raman scattering studies on aggregated gold nanorods. J. Phys. Chem. A.107(18), 3372–3378 (2003).
  • Jun BH , KimJH, ParkHet al. Surface-enhanced Raman spectroscopic-encoded beads for multiplex immunoassay. J. Combinatorial Chem. 9(2), 237–244 (2007).
  • Jun BH , NohMS, KimGet al. Protein separation and identification using magnetic beads encoded with surface-enhanced Raman spectroscopy. Anal. Biochem. 391(1), 24–30 (2009).
  • Jun BH , BaekJH, KangH, ParkYJ, JeongDH, LeeYS. Preparation of polydiacetylene immobilized optically encoded beads. J. Colloid Interf. Sci.355(1), 29–34 (2011).
  • Sanles-Sobrido M , ExnerW, Rodriguez-LorenzoLet al. Design of SERS-encoded, submicron, hollow particles through confined growth of encapsulated metal nanoparticles. J. Am. Chem. Soc. 131(7), 2699–2705 (2009).
  • Douglas P , StokesRJ, GrahamD, SmithWE. Immunoassay for P38 MAPK using surface enhanced resonance Raman spectroscopy (SERRS). Analyst133(6), 791–796 (2008).
  • Watson DA , BrownLO, GaskillDRet al. A flow cytometer for the measurement of Raman spectra. Cytometry Part A. 73A(2), 119–128 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.