363
Views
0
CrossRef citations to date
0
Altmetric
Review

Engineering The Multifunctional Surface on Magnetic Nanoparticles for Targeted Biomedical Applications: A Chemical Approach

Pages 1429-1446 | Published online: 25 Oct 2011

Bibliography

  • Mornet S , VasseurS, GrassetF, DuguetE. Magnetic nanoparticle design for medical diagnosis and therapy. J. Mater. Chem.14, 2161–2175 (2004).
  • Bhirde A , XieJ, SwierczewskaM, ChenX. Nanoparticles for cell labelling. Nanoscale3, 142–153 (2011).
  • Pamme N , WilhelmC. Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis. Lab Chip6, 974–980 (2006).
  • Arruebo M , Fernandez-PachecoR, IbarraMR, SantamariaJ. Magnetic nanoparticles for drug delivery. Nano Today2, 22–32 (2007).
  • Yiu HHP , McBainSC, LethbridgeZAD, LeesMR, DobsonJ. Preparation and characterization of polyethylenimine-coated Fe3O4-MCM-48 nanocomposite particles as a novel agent for magnet-assisted transfection. J. Biomed. Mater. Res. A92A, 386–392 (2010).
  • Yiu HHP , McBainSC, El Haj AJ, Dobson J. A triple-layer design for polyethyleneimine-coated, nanostructured magnetic particles and their use in DNA binding and transfection. Nanotechnology18, 435601 (2007).
  • McBain SC , YiuHHP, DobsonJ. Magnetic nanoparticles for gene and drug delivery. Int. J. Nanomed.3, 169–180 (2008).
  • Lu AH , SalabasEL, SchuthF. Magnetic nanoparticles. synthesis, protection, functionalization, and application. Angew. Chem. Intl. Ed.46, 1222–1244 (2007).
  • Berry CC , CurtisASG. Functionalisation of magnetic nanoparticles for applications in biomedicine. J. Phys. D Appl. Phys.36, R198–R206 (2003).
  • Laurent S , ForgeD, PortMet al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108, 2064–2110 (2008).
  • Wu HX , LiuG, ZhangSJet al. Biocompatibility, MR imaging and targeted drug delivery of a rattle-type magnetic mesoporous silica nanosphere system conjugated with PEG and cancer-cell-specific ligands. J. Mater. Chem. 21, 3037–3045 (2011).
  • Kumar M , YigitM, DaiGP, MooreA, MedarovaZ. Image-guided breast tumor therapy using a small interfering RNA nanodrug. Cancer Res.70, 7553–7561 (2010).
  • Harisinghani MG , SainiS, WeisslederRet al. Differentiation of liver hemangiomas from metastases and hepatocellular carcinoma at MR imaging enhanced with blood-pool contrast agent Code-7227. Radiology 202, 687–691 (1997).
  • Cornell RM , Udo Schwertmann U. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses. Wiley-VCH Verlag GmbH, Weinheim, Germany (2003).
  • Cushing BL , KolesnichenkoVL, O‘ConnorCJ. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem. Rev.104, 3893–3946 (2004).
  • Park J , JooJ, KwonSG, JangY, HyeonT. Synthesis of monodisperse spherical nanocrystals. Angew. Chem. Int. Ed.46, 4630–4660 (2007).
  • Willard MA , KuriharaLK, CarpenterEE, CalvinS, HarrisVG. Chemically prepared magnetic nanoparticles. Int. Mater. Rev.49, 125–170 (2004).
  • Babes L , DenizotB, TanguyG, Le Jeune JJ, Jallet P. Synthesis of iron oxide nanoparticles used as MRI contrast agents: a parametric study. J. Colloid Interface Sci.212, 474–482 (1999).
  • Tartaj P , SernaCJ. Microemulsion-assisted synthesis of tunable superparamagnetic composites. Chem. Mater.14, 4396–4402 (2002).
  • Hyeon T . Chemical synthesis of magnetic nanoparticles. Chem. Commun.8, 927–934 (2003).
  • Yu WW , FalknerJC, YavuzCT, ColvinVL. Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts. Chem. Commun.20, 2306–2307 (2004).
  • Lee GG , KimWY. Effect of powder synthesis atmosphere on the characteristics of iron nanopowder in a plasma arc discharge process. Met. Mater. Int.11, 177–181 (2005).
  • Chazelas C , CoudertJF, JarrigeJ, FauchaisP. Synthesis of ultra fine particles by plasma transferred arc: influence of anode material on particle properties. J. Eur. Ceram. Soc.26, 3499–3507 (2006).
  • Roca AG , CostoR, RebolledoAFet al. Progress in the preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D Appl. Phys. 42, 224002 (2009).
  • van Tilborg GAF , VucicE, StrijkersGJet al. Annexin A5-functionalized bimodal nanoparticles for MRI and fluorescence imaging of atherosclerotic plaques. Bioconjugate Chem. 21, 1794–1803 (2010).
  • Guo K , BerezinMY, ZhengJet al. Near infrared-fluorescent and magnetic resonance imaging molecular probe with high T-1 relaxivity for in vivo multimodal imaging. Chem. Commun. 46, 3705–3707 (2010).
  • Lee HY , LiZ, ChenKet al. PET/MRI dual-modality tumor imaging using arginine-glycine-aspartic (RGD) – conjugated radiolabeled iron oxide nanoparticles. J. Nucl. Med. 49, 1371–1379 (2008).
  • Xie J , ChenK, HuangJet al. PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials 31, 3016–3022 (2010).
  • Zou P , YuYK, WangYAet al. Superparamagnetic iron oxide nanotheranostics for targeted cancer cell imaging and pH-dependent intracellular drug release. Mol. Pharm. 7, 1974–1984 (2010).
  • Veiseh O , GunnJW, ZhangMQ. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv. Drug Deliv. Rev.62, 284–304 (2010).
  • Erten A , WrasidloW, ScadengMet al. Magnetic resonance and fluorescence imaging of doxorubicin-loaded nanoparticles using a novel in vivo model. Nanomed. Nanotechnol. Biol. Med. 6, 797–807 (2010).
  • Lin JJ , ChenJS, HuangSJet al. Folic acid-Pluronic F127 magnetic nanoparticle clusters for combined targeting, diagnosis, and therapy applications. Biomaterials 30, 5114–5124 (2009).
  • Gazeau F , LevyM, WilhelmC. Optimizing magnetic nanoparticle design for nanothermotherapy. Nanomedicine3, 831–844 (2008).
  • Gu BH , SchmittJ, ChenZH, LiangLY, McCarthyJF. Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models. Environ. Sci. Technol.28, 38–46 (1994).
  • Kim DK , MikhaylovaM, ZhangY, MuhammedM. Protective coating of superparamagnetic iron oxide nanoparticles. Chem. Mater.15, 1617–1627 (2003).
  • Dias AMGC , HussainA, MarcosAS, RoqueACA. A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides. Biotechnol. Adv.29, 142–155 (2011).
  • Hogemann D , JosephsonL, WeisslederR, BasilionJP. Improvement of MRI probes to allow efficient detection of gene expression. Bioconjugate Chem.11, 941–946 (2000).
  • Dung TT , DanhTM, HoaLTM, ChienDM, DucNH. Structural and magnetic properties of starch-coated magnetite nanoparticles. J. Exp. Nanosci.4, 259–267 (2009).
  • Chen JP , YangPC, MaYH, WuT. Characterization of chitosan magnetic nanoparticles for in situ delivery of tissue plasminogen activator. Carbohydr. Polym.84, 364–372 (2011).
  • Lewin M , CarlessoN, TungCHet al. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nature Biotechnol. 18, 410–414 (2000).
  • Veiseh O , SunC, GunnJet al. Optical and MRI multifunctional nanoprobe for targeting gliomas. Nano Lett. 5, 1003–1008 (2005).
  • Kohler N , SunC, FichtenholtzA, GunnJ, FangC, ZhangMQ. Methotrexate-immobilized poly(ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery, Small2, 785–792 (2006).
  • Sun C , SzeR, ZhangMQ. Folic acid-PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI. J. Biomed. Mater. Res. A78A, 550–557 (2006).
  • Abdallaa MO , AnejaR, DeanDet al. Synthesis and characterization of noscapine loaded magnetic polymeric nanoparticles. J. Magnet. Magnet. Mater. 322, 190–196 (2010).
  • Schulze K , KochA, Petri-FinkAet al. Uptake and biocompatibility of functionalized poly(vinylalcohol) coated superparamagnetic maghemite nanoparticles by synoviocytes in vitro. J. Nanosci. Nanotechnol. 6, 2829–2840 (2006).
  • Gang J , ParkSB, HyungWet al. Magnetic poly epsilon-caprolactone nanoparticles containing Fe3O4 and gemcitabine enhance anti-tumor effect in pancreatic cancer xenograft mouse model. J. Drug Target. 15, 445–453 (2007).
  • Yang J , ParkSB, YoonHG, HuhYM, HaamS. Preparation of poly epsilon-caprolactone nanoparticles containing magnetite for magnetic drug carrier. Int. J. Pharm.324, 185–190 (2006).
  • Ino K , ItoA, KumazawaH, KagamiH, UedaM, HondaH. Incorporation of capillary-like structures into dermal cell sheets constructed by magnetic force-based tissue engineering. J. Chem. Eng. Jpn40, 51–58 (2007).
  • Corr SA , RakovichYP, Gun‘koYK. Multifunctional magnetic-fluorescent nanocomposites for biomedical applications. Nanoscale Res. Lett.3, 87–104 (2008).
  • Park K , JuYM, SonJS, AhnKD, HanDK. Surface modification of biodegradable electrospun nanofiber scaffolds and their interaction with fibroblasts. J. Biomater. Sci. Polym. Ed.18, 369–382 (2007).
  • Bajpai AK , GuptaR. Synthesis and characterization of magnetite (Fe3O4)-polyvinyl alcohol-based nanocomposites and study of superparamagnetism. Polym. Composite31, 245–255 (2010).
  • Cao JQ , WangYX, YuJFet al. Preparation and radiolabeling of surface-modified magnetic nanoparticles with rhenium-188 for magnetic targeted radiotherapy. J. Magnet. Magent. Mater. 277, 165–174 (2004).
  • Feng B , HongRY, WangLSet al. Synthesis of Fe3O4/APTES/PEG diacid functionalized magnetic nanoparticles for MR imaging. Colloid Surf. A Physicochem. Eng. Asp. 328, 52–59 (2008).
  • Nativo P , PriorIA, BrustM. Uptake and intracellular fate of surface-modified gold nanoparticles. ACS Nano2, 1639–1644 (2008)
  • Logeart-Avramoglou D , JozefonviczJ. Carboxymethyl benzylamide sulfonate dextrans (CMDBS), a family of biospecific polymers endowed with numerous biological properties: a review. J. Biomed. Materials. Res.48, 578–590 (1999).
  • Togrul H , ArslanN. Production of carboxymethyl cellulose from sugar beet pulp cellulose and rheological behaviour of carboxymethyl cellulose. Carbohydr. Polym.54, 73–82 (2003).
  • Suh JKF , MatthewHWT. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials21, 2589–2598 (2000).
  • Madihally SV , MatthewHWT. Porous chitosan scaffolds for tissue engineering. Biomaterials20, 1133–1142 (1999).
  • Huang M , FongCW, KhorE, LimLY. Transfection efficiency of chitosan vectors: effect of polymer molecular weight and degree of deacetylation. J. Control. Release106, 391–406 (2005).
  • Agnihotri SA , MallikarjunaNN, AminabhaviTM. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J. Control. Release100, 5–28 (2004).
  • Vicennati P , GiulianoA, OrtaggiG, MasottiA. Polyethylenimine in medicinal chemistry. Curr. Med. Chem.15, 2826–2839 (2008).
  • Burke NAD , StoverHDH, DawsonFP. Magnetic nanocomposites: preparation and characterization of polymer-coated iron nanoparticles. Chem. Mater.14, 4752–4761 (2002).
  • Nasongkla N , BeyE, RenJMet al. Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett. 6, 2427–2430 (2006).
  • Bakandritsos A , MattheolabakisG, ZborilRet al. Preparation, stability and cytocompatibility of magnetic/PLA-PEG hybrids. Nanoscale 2, 564–572 (2010).
  • Zhang JL , SrivastavaRS, MisraRDK. Core-shell magnetite nanoparticles surface encapsulated with smart stimuli-responsive polymer: synthesis, characterization, and LCST of viable drug-targeting delivery system. Langmuir23, 6342–6351 (2007).
  • Zhang J , MisraRDK. Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: core-shell nanoparticle carrier and drug release response. Acta Biomater.3, 838–850 (2007).
  • Jordan A , ScholzR, Maier-HauffKet al. Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. J. Magnet. Magnet. Mater. 225, 118–126 (2001).
  • Woodward RT , OlariuCI, HasanEA, YiuHHP, RosseinskyMJ, WeaverJVM. Multi-responsive polymer-stabilized magnetic engineered emulsions as liquid-based switchable magneto-responsive actuators, Soft Matter.7, 4335–4340 (2011).
  • Simon A , Cohen-BouhacinaT, PorteMC, AimeJP, BaqueyC. Study of two grafting methods for obtaining a 3-aminopropyltriethoxysilane monolayer on silica surface. J. Colloid Interface Sci.251, 278–283 (2002).
  • Bouffier L , YiuHHP, RosseinskyMJ. Chemical grafting of a DNA-intercalator probe onto functional iron oxide nanoparticles: a physicochemical study, Langmuir27, 6185–6192 (2011).
  • Mouawia R , MehdiA, ReyeC, CorriuRJP. Bifunctional ordered mesoporous materials. direct synthesis and study of the distribution of two distinct functional groups in the pore channels. J. Mater. Chem.18, 4193–4203 (2008).
  • Olariu CI , YiuHHP, BouffierLet al. Multifunctional Fe3O4 nanoparticles for targeted bi-modal imaging of pancreatic cancer. J. Mater. Chem. 21, 12650–12659 (2011).
  • Xu CJ , XuKM, GuHWet al. Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles. J. Am. Chem. Soc. 126, 9938–9939 (2004).
  • Benyettou F , LalatonneY, ChebbiIet al. A multimodal magnetic resonance imaging nanoplatform for cancer theranostics. Phys. Chem. Chem. Phys. 13, 10020–10027 (2011).
  • Vallet-Regi M , BalasF, ArcosD. Mesoporous materials for drug delivery. Agnew. Chem. Int. Ed.46, 7548–7558 (2007).
  • Yiu HHP , BottingCH, BottingNP, WrightPA. Size selective protein adsorption on thiol-functionalised SBA-15 mesoporous molecular sieve. Phys. Chem. Chem. Phys.3, 2983–2985 (2001).
  • Yiu HHP , NiuHJ, BiermansE, van Tendeloo G, Rosseinsky MJ. Designed multifunctional nanocomposites for biomedical applications. Adv. Funct. Mater.20, 1599–1609 (2010).
  • Lewinski N , ColvinV, DrezekR. Cytotoxicity of nanoparticles. Small4, 26–49 (2008).
  • Pisanic TR , BlackwellJD, ShubayevVI, FinonesRR, JinS. Nanotoxicity of iron oxide nanoparticle internalization in growing neurons. Biomaterials28, 2572–2581 (2007).
  • Sonvico F , MornetS, VasseurSet al. Folate-conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: synthesis, physicochemical characterization, and in vitro experiments. Bioconjugate Chem. 16, 1181–1188 (2005).
  • Devaraj NK , KeliherEJ, ThurberGM, NahrendorfM, WeisslederR. 18F Labeled nanoparticles for in vivo PET-CT imaging. Bioconjugate Chem.20, 397–401 (2009).
  • Jarrett BR , GustafssonB, KukisDL, LouieAY. Synthesis of Cu-64-labeled magnetic nanoparticles for multimodal imaging. Bioconjugate Chem.19, 1496–1504 (2008).
  • Kim EH , LeeHS, KwakBK, KimBK. Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent. J. Magnet. Magnet. Mater.289, 328–330 (2005).
  • Liang YY , ZhangLM. Bioconjugation of papain on superparamagnetic nanoparticles decorated with carboxymethylated chitosan biomacromolecules, 8, 1480–1486 (2007).
  • Kim DH , KimKN, KimKM, LeeYK. Targeting to carcinoma cells with chitosan- and starch-coated magnetic nanoparticles for magnetic hyperthermia. J. Biomed. Mater. Res. A88A, 1–11 (2009).
  • Ge YQ , ZhangY, HeSY, NieF, TengGJ, GuN. Fluorescence modified chitosan-coated magnetic nanoparticles for high-efficient cellular imaging. Nanoscale Res. Lett.4, 287–295 (2009).
  • Kim DK , MikhaylovaM, WangFHet al. Starch-coated superparamagnetic nanoparticles as MR contrast agents. Chem. Mater. 15, 4343–4351 (2003).
  • Yang Y , JiangJS, DuB, GanZH, QianM, ZhangP. Preparation and properties of a novel drug delivery system with both magnetic and biomolecular targeting. J. Mater. Sci. Mater. Med.22, 301–307 (2011).
  • Groman EV , YangMH, ReinhardtCP, WeinbergJS, VaccaroDE. Polycationic nanoparticles: (1) synthesis of a polylysine-MION conjugate and its application in labeling fibroblasts. J. Cardiovasc. Trans. Res.4, 30–38 (2011).
  • Li Z , XiangJ, ZhangWet al. Nanoparticle delivery of anti-metastatic NM23-H1 gene improves chemotherapy in a mouse tumor model. Cancer Gene. Ther. 16, 423–429 (2009).
  • Yang JM , LeeCH, ParkJet al. Antibody conjugated magnetic PLGA nanoparticles for diagnosis and treatment of breast cancer. J. Mater. Chem. 17, 2695–2699 (2007).
  • Pouponneau P , LerouxJC, MartelS. Magnetic nanoparticles encapsulated into biodegradable microparticles steered with an upgraded magnetic resonance imaging system for tumor chemoembolization. Biomaterials30, 6327–6332 (2009).
  • Arsianti M , LimM, MarquisCP, AmalR. Polyethylenimine based magnetic iron-oxide vector: the effect of vector component assembly on cellular entry mechanism, intracellular localization, and cellular viability. Biomacromolecules11, 2521–2531 (2010).
  • Arsianti M , LimM, MarquisCP, AmalR. Assembly of polyethylenimine-based magnetic iron oxide vectors: insights into gene delivery. Langmuir26, 7314–7326 (2010).
  • Cho SJ , JarrettBR, LouieAY, KauzlarichSM. Gold-coated iron nanoparticles: a novel magnetic resonance agent for T-1 and T-2 weighted imaging. Nanotechnology17, 640–644 (2006).
  • Lu CW , HungY, HsiaoJKet al. Bifunctional magnetic silica nanoparticles for highly efficient human stem cell labelling. Nano Lett. 7, 149–154 (2007)
  • Lee JH , JunYW, YeonSI, ShinJS, CheonJW. Dual-mode nanoparticle probes for high-performance magnetic resonance and fluorescence imaging of neuroblastoma. Angew. Chem. Int. Ed.45, 8160–8162 (2006).
  • Zhao LY , YangB, DaiXCet al. Glutaraldehyde mediated conjugation of amino-coated magnetic nanoparticles with albumin protein for nanothermotherapy. J. Nanosci. Nanotechnol. 10, 7117–7120 (2010).
  • Wilhelm C , BilloteyC, RogerJ, PonsJN, BacriJC, GazeauF. Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating. Biomaterials24, 1001–1011 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.