516
Views
1
CrossRef citations to date
0
Altmetric
Review

Superparamagnetic Nanosystems Based on Iron Oxide Nanoparticles for Biomedical Imaging

, , , &
Pages 519-528 | Published online: 04 May 2011

Bibliography

  • Schoonman J : Nanostructured materials in solid state ionics.Solid State Ionics135, 5–19 (2000).
  • Pan J , LiuY, FengSS: Multifunctional nanoparticles of biodegradable copolymer blend for cancer diagnosis and treatment.Nanomedicine (Lond).5, 347–360 (2010).
  • Lu W , LieberCM: Nanoelectronics fromthe bottom up.Nat. Mater.6, 841–850 (2007).
  • Wan WK , YangLF, PadavanDT: Use of degradable and nondegradable nanomaterials for controlled release.Nanomedicine (Lond).2, 483–509 (2007).
  • Nagaraj VJ , AithalS, EatonS, BotharaM, WiktorP, PrasadP: Nanomonitor: a miniature electronic biosensor for glycan biomarker detection.Nanomedicine (Lond).5, 369–378 (2010).
  • Laurent S , ForgeD, PortMet al.: Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physico-chemical characterization and biological applications.Chem. Rev.108, 2064–2110 (2008).
  • Lauterbur PC : Image-formation by induced local interactions – examples employing nuclear magnetic-resonance.Clin. Orthop. Relat. Res.244, 3–6 (1989)
  • Laurent S , BoutryS, MahieuI, Vander Elst L, Muller RN: Iron oxide based MR contrast agents: from chemistry to cell labeling. Curr. Med. Chem.16, 4712–4727 (2009).
  • Vats N , WilhelmC, RautouPEet al.: Magnetic tagging of cell-derived microparticles: new prospects for imaging and manipulation of these mediators of biological information.Nanomedicine (Lond).5, 727–738 (2010).
  • Mahmoudi M , SantS, WangB, LaurentS, SenT: Superparamagenetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy.Adv. Drug Deliv. Rev.63(1–2), 24–46 (2010).
  • Son SJ , ReichelJ, BeHet al.: Magnetic nanotubes for magnetic-field-assisted bioseparation, biointeraction, and drug delivery.J. Am. Chem. Soc.127, 7316–7317 (2005).
  • Sachdev S , BuragohainC, VojtaM: Quantum impurity in a nearly critical two-dimensional antiferromagnet.Science286, 2479–2482 (1999).
  • Aliev FG , Correa-DuarteMA, MamedovAet al.: Layer-by-layer assembly of core-shell magnetite nanoparticles: effect of silica coating on interparticle interactions and magnetic properties.Adv. Mater.11, 1006–1010 (1999).
  • Yavuz CT , MayoJT, YuWWet al.: Low-field magnetic separation of monodisperse Fe3O4 nanocrystals.Science314, 964–967 (2006).
  • Bai X , SonSJ, ZhangSXet al.: Synthesis of superparamagnetic nanotubes as MRI contrast agents and for cell labeling.Nanomedicine3, 163–174 (2008).
  • Verwey EJW : Electronic conduction of magnetite (Fe3O4) and its transition point at low temperatures.Nature144, 327–328 (1939).
  • Choi JJ , LeeJH, ParkDS, HahnBD, YoonWH, LinHT: Oxidation resistance coating of LSM and LSCF on SOFC metallic interconnects by the aerosol deposition process.J. Am. Ceram. Soc.90, 1926–1929 (2007).
  • Xu H , CuiL, TongNet al.: Development of high magnetization Fe3O4/polystyrene/silica nanospheres via combined miniemulsion/emulsion polymerization.J. Am. Chem. Soc.128, 15582–15583 (2006).
  • Gass J , PoddarP, AlmandJet al.: Superparamagnetic polymer nanocomposites with uniform Fe3O4 nanoparticle dispersions.Adv. Func. Mater.16, 71–75 (2006).
  • Xu Z , HouY, SunS: Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties.J. Am. Chem. Soc.129, 8698–8699 (2007).
  • Lin MM , KimHH, KimH, DobsonJ, KimDY: Surface activation and targeting strategies of superparamagnetic iron oxide nanoparticles in cancer-oriented diagnosis and therapy.Nanomedicine (Lond).5, 109–133 (2010).
  • Sun S , ZengH, RonbinsonDB: Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles.J. Am. Chem. Soc.126, 273–279 (2004).
  • Laurent S , Vander Elst L, Muller RN: Contrast agents for MRI: recent advances. In: Encyclopedia of Magnetic Resonance. Harris RK, Wasylishen R (Eds). Wiley, Chichester, UK (2007).
  • Muthupillai R , LomasDJ, RossmanPJ: Magnetic resonance elastography by direct visualization of propagating acoustic strain waves.Science269, 1854–1857 (1995).
  • Watson A , WuX, BruchezM: Lighting up cells with quantum dots.Biotechniques34, 296–300 (2003).
  • Chan WC , NieS: Quantum dot bioconjugates for ultrasensitive nonisotopic detection.Science281, 2016–2018 (1998).
  • Gubin SP : Magnetic Nanoparticles. Wiley-VCH, Weinheim, Germany (2009).
  • Li F , LiuJJ, EvansDG, DuanX: Stoichiometric synthesis of pure MFe2O4 (M = Mg, Co, and Ni) spinel ferrites from tailored layered double hydroxide (hydrotalcite-like) precursors.Chem. Mater.16, 1597–1602 (2004).
  • Zhang Z , RondinoneAJ, MaJX, ShenJ, DaiS: Morphologically templated growth of aligned spinel CoFe2O4 nanorods.Adv. Mater.17, 1415–1419 (2005).
  • Naughton BT , ClarkeDR: Composition-size effects in nickel–zinc ferrite nanoparticles prepared by aqueous coprecipitation.J. Am. Ceram. Soc.90, 1926–1929 (2007).
  • Chen ZM , JiaoZ, LiZQ: Preparation of magnetic nanospheres from a reverse microemulsion stabilized by a block copolymer surfactant.J. Appl. Poly. Sci.110, 1664–1670 (2008).
  • Lu AH , SalabasEL, SchüthF: Magnetic nanoparticles: synthesis, protection, functionalization, and application.Angew. Chem. Int. Ed.46, 1222–1244 (2007).
  • Tang ZX , SorensenCM, KlabundeKJ, HadjipanayisGC: Preparation of manganese ferrite fine particles from aqueous solution.J. Colloid Interf. Sci.146, 38–52 (1991).
  • Shi Y , DingJ, LiuX, WangJ: NiFe2O4 ultrafine particles prepared by co-precipitation/mechanical alloying.J. Magn. Magn. Mater.205, 249–254 (1999).
  • Pandya PB , JoshiHH, KulkarniRG: Magnetic and structural properties of CuFe2O4 prepared by the co-precipitation method.J. Mater. Sci. Lett.10, 474–476 (1991).
  • Kamiyama T , HanedaK, SatoTet al.: Cation distribution in ZnFe2O4 fine particles studied by neutron powder diffraction.Solid State Ionics81, 563–566 (1992).
  • Kim YI , KimD, LeeCS: Synthesis and characterization of CoFe2O4 magnetic nanoparticles prepared by temperature-controlled coprecipitation method.Physica B: Condens. Mater.337, 42–51 (2003).
  • Li J , DaiDL, ZhaoBG, LinYQ, LiuCY: Properties of ferrofluid nanoparticles prepared by coprecipitation and acid treatment.J. Nanopart. Res.4, 261–264 (2002).
  • Bao NZ , ShenLM, WangY, PadhanP, GuptaA: A facile thermolysis route to monodisperse ferrite nanocrystals.J. Am. Chem. Soc.129, 12374–12375 (2007).
  • Park J , AnK, HwangYet al.: Ultra-large-scale syntheses of monodisperse nanocrystals.Nat. Mater.3, 891–895 (2004).
  • An K , LeeN, ParkJet al.: Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals.J. Am. Chem. Soc.128, 688–689 (2006).
  • Jana NR , ChenY, PengX: Size- and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach.Chem. Mater.16, 3931–3935 (2004).
  • Hyeon T : Chemical synthesis of magnetic nanoparticles.Chem. Commun.927–934 (2003).
  • Murray CB , NorrisDJ, BawendiMG: Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites.J. Am. Chem. Soc.115, 8706–8715 (1993).
  • Feldmann C : Preparation of nanoscale pigment particles.Adv. Mater.13, 1301–1303 (2001).
  • Shifrina ZB , RajaduraiMS, FirsovaNVet al.: Poly(phenylene-pyridyl) dendrimers: synthesis and templating of metal nanoparticles.Macromolecules38, 9920–9932 (2005).
  • Jun YW , HuhYM, ChoiJSet al.: Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging.J. Am. Chem. Soc.127, 5732–5733 (2005).
  • Massart R : Preparation of aqueous magnetic liquids in alkaline and acidic media.IEEE Trans. Magn.17, 1247–1248 (1981).
  • Tourinho FA , FrankR, MassurtR: Aqueous ferrofluids based on manganese and cobalt ferrites.J. Mater. Sci.25, 3249–3254 (1990).
  • Bacri JC , PerzynskiR, SalinD, CabuilV, MassartR: Ionic ferrofluids: a crossing of chemistry and physics.J. Magn. Magn. Mater.85, 27–32 (1990).
  • Zheng Y , GaoS, YingJY: Synthesis and cell-imaging applications of glutathione-capped CdTe quantum dots.Adv. Mater.19, 376–380 (2007).
  • Yi DY , SelvanST, LeeSSet al.: Silica-coated nanocomposites of magnetic nanoparticles and quantum dots.J. Am. Chem. Soc.127, 4990–4991 (2005).
  • Selvan ST , PatraPK, AngCY, YingJY: Synthesis of silica-coated semiconductor and magnetic quantum dots and their use in the imaging of live cells.Angew. Chem.119, 2500–2504 (2007).
  • Pham T , JacksonJB, HalasNJ, LeeTR: Preparation and characterization of gold nanoshells coated with self-assembled monolayers.Langmuir18, 4915–4920 (2002).
  • Tang D , YuanR, ChaiY, AnH:Magnetic-core/porous-shell CoFe2O4/SiO2 composite nanoparticles as immobilized affinity supports for clinical immunoassays. Adv. Func. Mater.17, 976–982 (2007).
  • Loche D , CasulaMF. Falqui A, Marras S, Corrias A: Preparation of Mn, Ni, Co ferrite highly porous silica nanocomposite aerogels by an urea-assisted sol-gel procedure. J. Nanosci. Nanotech.10, 1008–1016 (2010).
  • Chen MH , GaoL, YangSW, SunJ: Fabrication of well-defined water-soluble core/shell heteronanostructures through the SiO2 spacer.Chem. Comm.28(12), 1272–1274 (2007).
  • Deng H , LiXL, PengQ: Monodisperse magnetic single-crystal ferrite microspheres.Angew. Chem. Int. Ed.44, 2782–2785 (2005).
  • Gu HW , ZhengRK, ZhangXX, XuB: Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: a conjugate of quantum dot and magnetic nanoparticles.J. Am. Chem. Soc.126, 5664–5665 (2004).
  • Xie HY , ZuoC, LiuYet al.: Cell-targeting multifunctional nanospheres with both fluorescence and magnetism.Small1, 506–509 (2005).
  • Li L , ChooESG, LiuZY, DingJ, XueJM: Double-layer silica core-shell nanospheres with superparamagnetic and fluorescent functionalities.Chem. Phys. Lett.461, 114–117 (2008).
  • Hong X , LiJ, WangMJet al.: Fabrication of magnetic luminescent nanocomposites by a layer-by-layer self-assenbly approach.Chem. Mater.16, 4022–4027 (2004).
  • Franchini MC , BaldiG, BonacchiDet al.: Bovine serum albumin-based magnetic nanocarrier for MRI diagnosis and hyperthermic therapy: a potential theranostic approach against cancer.Small6, 366–370 (2010).
  • Yang J , LeeCH, KoHJet al.: Multifunctional magneto-polymeric nanohybrids for targeted detection and synergistic therapeutic effects on breast cancer.Angew. Chem.119, 8992–8995 (2007).
  • Jang J , NahH, LeeJH, MoonSH, KimMG, CheonJ: Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles.Angew. Chem.121, 1260–1264 (2009).
  • Kim DH , ZengHD, NgTC, BrazelCS: T1 and T2 relaxivities of succimer-coated MFe3+2O4 (M = Mn2+, Fe2+ and Co2+)inverse spinel ferrites for potential use as phase-contrast agents in medical MRI.J. Magn. Magn. Mater.321, 3899–3904 (2009).
  • Corr SA , RakovichYP, Gun‘koYK: Multifunctional magnetic-fluorescent nanocomposites for biomedicalapplications.Nanoscale Res. Lett.3, 87–104 (2008).
  • Levy L , SahooY, KimKS, BergeyEJ, PrasadPN: Nanochemistry: synthesis and characterization of multifunctional nanoclinics for biological applications.Chem. Mater.14, 3715–3721 (2002).
  • Louie AY , HüberMM, AhrensETet al.: In vivo visualization of gene expression using magnetic resonance imaging.Nat. Biotechnol.18, 321–325 (2000).
  • Genove G , MarcoUD, XuHY, GoinsWF, AhrensET: A new transgene reporter for in-vivo magnetic resonance imaging.Nat. Med.11, 450–454 (2005).
  • Ahrens ET , FloresR, XuHY, MoralPA: In vivo imaging platform for tracking immunotherapeutic cells.Nat. Biotechnol.23, 983–987 (2005).
  • Rondinone AJ , LiuC, ZhangZJ: Determination of magnetic anisotropy distribution and anisotropy constant of manganese spinel ferrite nanoparticles.J. Phys. Chem. B105, 7967–7971 (2001).
  • Morais PC , SilveiraLB, OliveiraAC, SantosJG: Initial dynamic susceptibility of biocompatible magnetic fluids.Rev. Adv. Mater. Sci.18, 536–540 (2008).
  • Rondinone AJ , SamiaACS, ZhangZJ: Superparamagnetic relaxation and magnetic anisotropy energy distribution in CoFe2O4 spinel ferrite nanocrystallites.J. Phys. Chem. B103, 6876–6880 (1999).
  • Fortin JP , WilhelmC, ServaisJ, MénagerC, BacriJC, GazeauF: Size-sorted anionic Iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia.J. Am. Chem. Soc.129, 2628–2635 (2007).
  • Bae S , LeeSW, HirukawaA, TakemuraY, JoYH, LeeSG: AC magnetic-field-induced heating and physical properties of ferrite nanoparticles for a hyperthermia agent in medicine.Nanotech. IEEE Trans.8, 86–94 (2009).
  • Torres TE , RocaAG, MoralesMPet al.: Magnetic properties and energy absorption of CoFe2O4 nanoparticles for magnetic hyperthermia.J. Phys. Conf. Ser. DOI: 10.1088/1742–6596/200/7/072101 (2010) (Epub ahead of print).
  • Baldi G , LorenziG, RavagliC: Hyperthermic effect of magnetic nanoparticles under electromagnetic field.Prosess. Appl. Ceram.3, 103–106 (2009).
  • Chen Y , RuanM, LiW: The synthesis and thermal effect of CoFe2O4 nanoparticles.J. Alloy. Compd.493, L36–L38 (2010).
  • Prasad NK , RathinasamyK, PandaD, BahadurD: Mechanism of cell death induced by magnetic hyperthermia with nanoparticles of γ-MnxFe2–xO3 synthesized by a single step process.J. Mater. Chem.17, 5042–5051 (2007).
  • Beji Z , HaniniA, SmiriLSet al.: Magnetic properties of Zn-substituted MnFe2O4 nanoparticles synthesized in polyol as potential heating agents for hyperthermia. Evaluation of their toxicity on Endothelial cells.Chem. Mater. Article APAS22(19), S420–S429 (2010).
  • Kim DH , NiklesDE, BrazelCS: Synthesis and characterization of multifunctional chitosan-MnFe2O4 nanoparticles for magnetic hyperthermia and drug delivery.Materials3, 4051–4065 (2010).
  • Bae S , LeeSW, TakemuraY: Applications of NiFe2O4 nanoparticles for a hyperthermia agent in biomedicine.Appl. Phys. Lett.89, 252503–252506 (2006).
  • Lee S , BaeS, TakemuraY, YamashitaE, KunisakiJ, KimC: Magnetic properties, self-temperature rising characteristics, and biocompatibility of NiFe2O4 nanoparticles for hyperthermia applications. Presented at: Magnetics Conference, IEEE International. San Diego, CA, USA, 26 September 2006.
  • Yoon TJ , KimJS, KimBGet al.: Multifunctional nanoparticles possessing a “magnetic motor effect” for drug or gene delivery.Angew. Chem. Int. Ed.44, 1068–1071 (2007).
  • Jung JT , NahH, LeeJH, MoonSH, KimMG, CheonJ: All-in-one target-cell-specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery.Angew. Chem. Int. Ed.48, 1234–1238 (2009).
  • Kim DH , NiklesDE, JohnsonDT, BrazelCS: Heat generation of aqueously dispersed CoFe2O4 nanoparticles as heating agents for magnetically activated drug delivery and hyperthermia.J. Magn. Magn. Mater.320, 2390–2396 (2008).
  • Yuan Q , RanaS, SrivastavaRS, GalloA, MisraRDK: Synthesis and physicochemical response of polyethylene glycol encapsulated nickel ferrite nanoparticles.Mater. Sci. Technol.24, 361–368 (2008).
  • Ai L , ZhouY, JiangJ: Removal of methylene blue from aqueous solution by montmorillonite/CoFe2O4 composite with magnetic separation performance.Desalination266(1–3), 72–77 (2010).
  • Tang IM , KrishnamraN, CharoenphandhuN, HoonsawatR, WeeraphatPO: Biomagnetic of apatite-coated cobalt ferrite: a core-shell particle for protein adsorption and pH-controlled release.Nanoscale Res. Lett.6, 19 (2010).
  • Liang HF , WangZC: Adsorption of bovine serum albumin on functionalized silica-coated magnetic MnFe2O4 nanoparticles.Mater. Chem. Phys.124(2–3), 964–969 (2010).
  • Chen F , ZhaoX, AoQet al.: Antimicrobial activity of AOT-isooctane reverse micelle as a bioseparation and biocatalysis tool.Chem. Speciation Bioavailability20, 191–197 (2008).
  • Lu AH , LiWC, KieferAet al.: Fabrication of magnetically separable mesostructured silica with an open pore system.J. Am. Chem. Soc.126, 8616–8617 (2004).
  • Wang L , GanX: Antibody-functionalized magnetic nanoparticles for electrochemical immunoassay of α-1-fetoprotein in human serum.Microchim. Acta164, 231–237 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.