154
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Interaction of Cowpea Mosaic Virus Nanoparticles with Surface Vimentin and Inflammatory Cells in Atherosclerotic Lesions

, , , &
Pages 877-888 | Received 05 Aug 2011, Accepted 30 Nov 2011, Published online: 26 Jun 2012

References

  • Slevin M , BadimonL, Grau-OlivaresMet al. Combining nanotechnology with current biomedical knowledge for the vascular imaging and treatment of atherosclerosis. Mol. Biosyst. 6(3), 444–450 (2010).
  • Cybulsky MI , Jongstra-BilenJ. Resident intimal dendritic cells and the initiation of atherosclerosis. Curr. Opin. Lipidol.21(5), 397–403 (2010).
  • Tavora F , CresswellN, LiL, RippleM, BurkeA. Immunolocalisation of fibrin in coronary atherosclerosis: implications for necrotic core development. Pathology42(1), 15–22 (2010).
  • Ota H , YuW, UnderhillHRet al. Hemorrhage and large lipid-rich necrotic cores are independently associated with thin or ruptured fibrous caps: an in vivo 3T MRI study. Arterioscler. Thromb. Vasc. Biol. 29(10), 1696–1701 (2009).
  • Ovchinnikova O , GylfeA, BaileyLet al. Osteoprotegerin promotes fibrous cap formation in atherosclerotic lesions of ApoE-deficient mice--brief report. Arterioscler. Thromb. Vasc. Biol. 29(10), 1478–1480 (2009).
  • Van Den Diepstraten C , PapayK, BolenderZ, BrownA, PickeringJG. Cloning of a novel prolyl 4-hydroxylase subunit expressed in the fibrous cap of human atherosclerotic plaque. Circulation108(5), 508–511 (2003).
  • Heeneman S , CleutjensJP, FaberBCet al. The dynamic extracellular matrix: intervention strategies during heart failure and atherosclerosis. J. Pathol. 200(4), 516–525 (2003).
  • McNeill E , ChannonKM, GreavesDR. Inflammatory cell recruitment in cardiovascular disease: murine models and potential clinical applications. Clin. Sci. (Lond.)118(11), 641–655 (2010).
  • Yla-Herttuala S , BentzonJF, DaemenMet al. Stabilisation of atherosclerotic plaques. Position paper of the European Society of Cardiology (ESC) Working Group on atherosclerosis and vascular biology. Thromb. Haemost. 106(1), 1–19 (2011).
  • Ambrose JA . In search of the ‘vulnerable plaque‘: can it be localized and will focal regional therapy ever be an option for cardiac prevention? J. Am. Coll. Cardiol.51(16), 1539–1542 (2008).
  • Kubo T , ImanishiT, TakaradaSet al. Assessment of culprit lesion morphology in acute myocardial infarction: ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy. J. Am. Coll. Cardiol. 50(10), 933–939 (2007).
  • Kolodgie FD , NarulaJ, YuanC, BurkeAP, FinnAV, VirmaniR. Elimination of neoangiogenesis for plaque stabilization: is there a role for local drug therapy? J. Am. Coll. Cardiol.49(21), 2093–2101 (2007).
  • Carlier SG , De Korte CL, Brusseau E, Schaar JA, Serruys PW, Van Der Steen AF. Imaging of atherosclerosis. Elastography. J. Cardiovasc. Risk9(5), 237–245 (2002).
  • Madjid M , NaghaviM, MalikBA, LitovskyS, WillersonJT, CasscellsW. Thermal detection of vulnerable plaque. Am. J. Cardiol.90(10C), 36L–39L (2002).
  • Demos SM , Alkan-OnyukselH, KaneBJet al.: In vivo targeting of acoustically reflective liposomes for intravascular and transvascular ultrasonic enhancement. J. Am. Coll. Cardiol.33(3), 867–875 (1999).
  • Unno N , MitsuokaH, TakeiYet al. Virtual angioscopy using 3-dimensional rotational digital subtraction angiography for endovascular assessment. J. Endovasc. Ther. 9(4), 529–534 (2002).
  • Libby P . Inflammation in atherosclerosis. Nature420(6917), 868–874 (2002).
  • Shimizu K , MitchellRN, LibbyP. Inflammation and cellular immune responses in abdominal aortic aneurysms. Arterioscler. Thromb. Vasc. Biol.26(5), 987–994 (2006).
  • Nahrendorf M , JafferFA, KellyKAet al. Noninvasive vascular cell adhesion molecule-1 imaging identifies inflammatory activation of cells in atherosclerosis. Circulation 114(14), 1504–1511 (2006).
  • Laitinen I , SarasteA, WeidlEet al. Evaluation of αvβ3 integrin-targeted positron emission tomography tracer 18F-galacto-RGD for imaging of vascular inflammation in atherosclerotic mice. Circ. Cardiovasc. Imaging 2(4), 331–338 (2009).
  • Tawakol A , CastanoAP, GadFet al. Intravascular detection of inflamed atherosclerotic plaques using a fluorescent photosensitizer targeted to the scavenger receptor. Photochem. Photobiol. Sci. 7(1), 33–39 (2008).
  • Cole JE , MitraAT, MonacoC. Treating atherosclerosis: the potential of Toll-like receptors as therapeutic targets. Expert Rev. Cardiovasc. Ther.8(11), 1619–1635 (2010).
  • Quillard T , CroceK, JafferFA, WeisslederR, LibbyP. Molecular imaging of macrophage protease activity in cardiovascular inflammation in vivo. Thromb. Haemost.105(5), 828–836 (2010).
  • Winter PM , MorawskiAM, CaruthersSDet al. Molecular imaging of angiogenesis in early-stage atherosclerosis with α(v)β3-integrin-targeted nanoparticles. Circulation 108(18), 2270–2274 (2003).
  • Kuroda S , MukohyamaH, KondoHet al. Bone mineral density of the mandible in ovariectomized rats: analyses using dual energy X-ray absorptiometry and peripheral quantitative computed tomography. Oral Dis. 9(1), 24–28 (2003).
  • Sajja HK , EastMP, MaoH, WangYA, NieS, YangL. Development of multifunctional nanoparticles for targeted drug delivery and noninvasive imaging of therapeutic effect. Curr. Drug Discov. Technol.6(1), 43–51 (2009).
  • Cormode DP , SkajaaT, FayadZA, MulderWJ. Nanotechnology in medical imaging: probe design and applications. Arterioscler. Thromb. Vasc. Biol.29(7), 992–1000 (2009).
  • Allen M , BulteJW, LiepoldLet al. Paramagnetic viral nanoparticles as potential high-relaxivity magnetic resonance contrast agents. Magn. Reson. Med. 54(4), 807–812 (2005).
  • Cormode DP , JarzynaPA, MulderWJ, FayadZA. Modified natural nanoparticles as contrast agents for medical imaging. Adv. Drug Deliv. Rev.62(3), 329–338 (2010).
  • Lewis JD , DestitoG, ZijlstraAet al. Viral nanoparticles as tools for intravital vascular imaging. Nat. Med. 12(3), 354–360 (2006).
  • Leong HS , SteinmetzNF, AblackAet al. Intravital imaging of embryonic and tumor neovasculature using viral nanoparticles. Nat. Protoc. 5(8), 1406–1417 (2010).
  • Koudelka KJ , DestitoG, PlummerEM, TraugerSA, SiuzdakG, ManchesterM. Endothelial targeting of cowpea mosaic virus (CPMV) via surface vimentin. PLoS Pathog.5(5), e1000417 (2009).
  • Koudelka KJ , RaeCS, GonzalezMJ, ManchesterM. Interaction between a 54-kilodalton mammalian cell surface protein and cowpea mosaic virus. J. Virol.81(4), 1632–1640 (2007).
  • Mor-Vaknin N , PunturieriA, SitwalaK, MarkovitzDM. Vimentin is secreted by activated macrophages. Nat. Cell Biol.5(1), 59–63 (2003).
  • Gonzalez MJ , PlummerEM, RaeCS, ManchesterM. Interaction of cowpea mosaic virus (CPMV) nanoparticles with antigen presenting cells in vitro and in vivo. PLoS ONE4(11), e7981 (2009).
  • Woollard KJ , GeissmannF. Monocytes in atherosclerosis: subsets and functions. Nat. Rev. Cardiol.7(2), 77–86 (2010).
  • Pamukcu B , LipGY, DevittA, GriffithsH, ShantsilaE. The role of monocytes in atherosclerotic coronary artery disease. Ann. Med.42(6), 394–403 (2010).
  • Lundberg AM , HanssonGK. Innate immune signals in atherosclerosis. Clin. Immunol.134(1), 5–24 (2010).
  • Webb NR , MooreKJ. Macrophage-derived foam cells in atherosclerosis: lessons from murine models and implications for therapy. Curr. Drug Targets8(12), 1249–1263 (2007).
  • Siegel-Axel D , DaubK, SeizerP, LindemannS, GawazM. Platelet lipoprotein interplay: trigger of foam cell formation and driver of atherosclerosis. Cardiovasc. Res.78(1), 8–17 (2008).
  • Zaragoza C , Gomez-GuerreroC, Martin-VenturaJLet al. Animal models of cardiovascular diseases. J. Biomed. Biotechnol. 2011, 497841 (2011).
  • Merkel M , Velez-CarrascoW, HudginsLC, BreslowJL. Compared with saturated fatty acids, dietary monounsaturated fatty acids and carbohydrates increase atherosclerosis and VLDL cholesterol levels in LDL receptor-deficient, but not apolipoprotein E-deficient, mice. Proc. Natl Acad. Sci. USA98(23), 13294–13299 (2001).
  • Babaev VR , PatelMB, SemenkovichCF, FazioS, LintonMF. Macrophage lipoprotein lipase promotes foam cell formation and atherosclerosis in low density lipoprotein receptor-deficient mice. J. Biol. Chem.275(34), 26293–26299 (2000).
  • Jiang Z , GeorgelP, DuXet al. CD14 is required for MyD88-independent LPS signaling. Nat. Immunol. 6(6), 565–570 (2005).
  • Rae CS , KhorIW, WangQet al. Systemic trafficking of plant virus nanoparticles in mice via the oral route. Virology 343(2), 224–235 (2005).
  • Davignon J , GanzP. Role of endothelial dysfunction in atherosclerosis. Circulation109(23 Suppl. 1), III27–III32 (2004).
  • Eefting FD , PasterkampG, ClarijsRJ, Van Leeuwen TG, Borst C. Remodeling of the atherosclerotic arterial wall: a determinant of luminal narrowing in human coronary arteries. Coron. Artery Dis.8(7), 415–421 (1997).
  • Steinmetz NF , ChoCF, AblackA, LewisJD, ManchesterM. Cowpea mosaic virus nanoparticles target surface vimentin on cancer cells. Nanomedicine (Lond).6(2), 351–364 (2011).
  • Nahrendorf M , ZhangH, HembradorSet al. Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation 117(3), 379–387 (2008).
  • Tearney GJ , YabushitaH, HouserSLet al. Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography. Circulation 107(1), 113–119 (2003).
  • Zhang Z , MachacJ, HelftGet al. Non-invasive imaging of atherosclerotic plaque macrophage in a rabbit model with F-18 FDG PET: a histopathological correlation. BMC Nucl. Med. 6, 3 (2006).
  • Lipinski MJ , FriasJC, AmirbekianVet al. Macrophage-specific lipid-based nanoparticles improve cardiac magnetic resonance detection and characterization of human atherosclerosis. JACC Cardiovasc. Imaging 2(5), 637–647 (2009).
  • Bryant AE , BayerCR, HuntingtonJD, StevensDL. Group A streptococcal myonecrosis: increased vimentin expression after skeletal-muscle injury mediates the binding of Streptococcus pyogenes. J. Infect. Dis.193(12), 1685–1692 (2006).
  • Garg A , BarnesPF, PorgadorAet al. Vimentin expressed on Mycobacterium tuberculosis-infected human monocytes is involved in binding to the NKp46 receptor. J. Immunol. 177(9), 6192–6198 (2006).
  • Huet D , BagotM, LoyauxDet al. SC5 mAb represents a unique tool for the detection of extracellular vimentin as a specific marker of Sezary cells. J. Immunol. 176(1), 652–659 (2006).
  • Leong HS , MaheshBM, DayJRet al. Vimentin autoantibodies induce platelet activation and formation of platelet–leukocyte conjugates via platelet-activating factor. J. Leukoc. Biol. 83(2), 263–271 (2008).
  • Moisan E , GirardD. Cell surface expression of intermediate filament proteins vimentin and lamin B1 in human neutrophil spontaneous apoptosis. J. Leukoc. Biol.79(3), 489–498 (2006).
  • Nieminen M , HenttinenT, MerinenM, Marttila-IchiharaF, Eriksson Je, Jalkanen S. Vimentin function in lymphocyte adhesion and transcellular migration. Nat. Cell. Biol.8(2), 156–162 (2006).
  • Podor TJ , SinghD, ChindemiPet al. Vimentin exposed on activated platelets and platelet microparticles localizes vitronectin and plasminogen activator inhibitor complexes on their surface. J. Biol. Chem. 277(9), 7529–7539 (2002).
  • Van Beijnum JR , DingsRP, Van Der Linden E et al. Gene expression of tumor angiogenesis dissected: specific targeting of colon cancer angiogenic vasculature. Blood108(7), 2339–2348 (2006).
  • Xu B , DewaalRM, Mor-VakninN, HibbardC, MarkovitzDM, KahnML. The endothelial cell-specific antibody PAL-E identifies a secreted form of vimentin in the blood vasculature. Mol. Cell. Biol.24(20), 9198–9206 (2004).
  • Levin N , BischoffED, DaigeCLet al. Macrophage liver X receptor is required for antiatherogenic activity of LXR agonists. Arterioscler. Thromb. Vasc. Biol. 25(1), 135–142 (2005).
  • Liu C , BhattacharjeeG, BoisvertW, DilleyR, EdgingtonT. In vivo interrogation of the molecular display of atherosclerotic lesion surfaces. Am. J. Pathol.163(5), 1859–1871 (2003).
  • Lomonossoff GP , ShanksM. The nucleotide sequence of cowpea mosaic virus B RNA. EMBO J.2(12), 2253–2258 (1983).
  • Chacko AM , HoodED, ZernBJ, MuzykantovVR. Targeted nanocarriers for imaging and therapy of vascular inflammation. Curr. Opin. Colloid Interface Sci.16(3), 215–227 (2011).
  • Lewis DR , KamisogluK, YorkAW, MoghePV. Polymer-based therapeutics: nanoassemblies and nanoparticles for management of atherosclerosis. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.3(4), 400–420 (2011).
  • Douma K , MegensRT, Van Zandvoort MA. Optical molecular imaging of atherosclerosis using nanoparticles: shedding new light on the darkness. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.3(4), 376–388 (2011).
  • Terashima M , UchidaM, KosugeHet al. Human ferritin cages for imaging vascular macrophages. Biomaterials 32(5), 1430–1437 (2011).
  • Uchida M , KosugeH, TerashimaMet al. Protein cage nanoparticles bearing the LyP-1 peptide for enhanced imaging of macrophage-rich vascular lesions. ACS Nano 5(4), 2493–2502 (2011).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.